ray tracing
image formation
image formation
rendering

computational simulation of image formation
rendering

- given viewer, geometry, materials, lights
- determine visibility and compute colors
raytracing

a specific rendering algorithm
raytracing algorithm

for each pixel {
 determine viewing direction
 intersect ray with scene
 compute illumination
 store result in pixel
}
vector math review

- point: location in 3D space
 \[\mathbf{P} = (P_x, P_y, P_z) \]

- vector: direction and magnitude
 \[\mathbf{v} = (v_x, v_y, v_z) \]
vector math review

- dot product
 - $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}| \cos \theta$

- cross product
 - $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$
 - $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}
vector math review

- segment: set of points (line) between two points
 \[\mathbf{P}(t) = \mathbf{A} + t(\mathbf{B} - \mathbf{A}) \text{ with } t \in [0, 1] \]
• ray: infinite line from point in a given direction
 \[P(t) = E + td \text{ with } t \in [0, \infty] \]
vector math review

- coordinate system aka frame
 - frame \(f = \{ f_O, f_x, f_y, f_z \} \): position and orthonormal axes
 - default (or world) frame: origin and three major axes
vector math review

- point coords are defined wrt a frame
 - $\mathbf{P} = (P_x, P_y, P_z)$ wrt $\{\mathbf{f}_O, \mathbf{f}_x, \mathbf{f}_y, \mathbf{f}_z\}$ (*world* if not specified)
 - $\mathbf{P} = ((\mathbf{P} - \mathbf{f}_O) \cdot \mathbf{f}_x, (\mathbf{P} - \mathbf{f}_O) \cdot \mathbf{f}_y, (\mathbf{P} - \mathbf{f}_O) \cdot \mathbf{f}_z)$
vector math review

- change of coordinate system \(f \rightarrow f' \)
 - \(P' = (P'_x, P'_y, P'_z) \) is \(P \) w.r.t \(\{f'_0, f'_x, f'_y, f'_z\} \)
 - \(P' = \left((P - f'_0) \cdot f'_x, (P - f'_0) \cdot f'_y, (P - f'_0) \cdot f'_z \right) \)
vector math review

- change of coordinate system $\mathbf{f}' \rightarrow \mathbf{f}$
 - $\mathbf{P}' = (P'_x, P'_y, P'_z)$ is \mathbf{P} w.r.t $\{\mathbf{f}'_O, \mathbf{f}'_x, \mathbf{f}'_y, \mathbf{f}'_z\}$
 - $\mathbf{P} = \mathbf{f}'_O + P'_x\mathbf{f}'_x + P'_y\mathbf{f}'_y + P'_z\mathbf{f}'_z$
vector math review

- vector coords are defined wrt a frame
 - to change coord system, ignore origin
 - \(\mathbf{v} = v'_x f'_x + v'_y f'_y + v'_z f'_z \)
 - \(\mathbf{v}' = \left(\mathbf{v} \cdot f'_x, \mathbf{v} \cdot f'_y, \mathbf{v} \cdot f'_z \right) \)
vector math review

• construct a frame from two non-orthonormal vectors \mathbf{z}', \mathbf{y}'
 ◦ assume that \mathbf{z}' is not parallel to \mathbf{y}'
 ◦ $\mathbf{z} = \mathbf{z}'/|\mathbf{z}'|$
 ◦ $\mathbf{x} = \mathbf{y}' \times \mathbf{z}/|\mathbf{y}' \times \mathbf{z}|$
 ◦ $\mathbf{y} = \mathbf{z} \times \mathbf{x}$
• construct a frame from a vector \mathbf{z}'
 ◦ pick arbitrary \mathbf{y}' and continue as above
vector math review

- infinite plane
 - $\mathbf{P} \in plane \iff (\mathbf{P} - \mathbf{C}) \cdot \mathbf{n} = 0 \iff \mathbf{P} \cdot \mathbf{n} = d$
 - $\mathbf{P}(u, v) = \mathbf{C} + u \cdot \mathbf{u} + v \cdot \mathbf{v}$ with $(u, v) \in (-\infty, \infty)^2$
 - normal: $\mathbf{n} = \mathbf{u} \times \mathbf{v}$
vector math review

- triangle baricentric coordinates
 - $\mathbf{P}(\alpha, \beta, \gamma) = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$ with $\alpha + \beta + \gamma = 1$
 - $\mathbf{P}(\alpha, \beta) = \alpha (\mathbf{A} - \mathbf{C}) + \beta (\mathbf{B} - \mathbf{C}) + \mathbf{C}$
 - $\alpha = \text{area}(\mathbf{BCP}) / \text{area}(\mathbf{ABC})$, ...
vector math review

- sphere
 - $\mathbf{P} \in sphere \iff |\mathbf{P} - \mathbf{C}| = R$
 - $\mathbf{P}(u, v) = \mathbf{C} + R \cdot (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$
for each pixel {
 -> determine viewing direction
 intersect ray with scene
 compute illumination
 store result in pixel
}
viewer model

- a painter tracing objects on a canvas in front

[Marschner 2004 – original unknown]
viewer model

- equivalent to pinhole photography

[Marschner 2004 – original unknown]
viewer model -- parameters

- camera frame: position O and orientation x, y, z
- image plane: distance d and size w, h
view frustum

- all visible points within a truncated pyramid
generating view rays

- for each pixel, ray from camera center to the pixel center
generating view rays

- ray: $\mathbf{r} = \mathbf{O} + t(\mathbf{Q} - \mathbf{O})/|\mathbf{Q} - \mathbf{O}|$
- \mathbf{Q} point on image plane
generating view rays

- \(Q(u, v) = (u - 0.5)wx + (v - 0.5)hy - dz \)
- image plane params: \((u, v) \in [0, 1]^2\), origin at bottom
geometry model

• simple shapes
 ◦ spheres, quads, triangles

• complex shapes
 ◦ handled as collections of simple shapes later in the course
ray-shape intersection

- determine visible surface by finding closest intersection along a ray

- ray \(\mathbf{r} : \mathbf{E} + t \mathbf{d} \) with \(t \in (t_{\text{min}}, t_{\text{max}}) \)
 - keep explicit bounds on \(t \)
 - e.g. used in shadows and to improve numerical precision
 - if not specified otherwise: \(t_{\text{min}} = \epsilon, t_{\text{max}} = \infty \)
 - \(\epsilon \) mitigate numerical precision issues ("shadow acne")
 - value is scene dependent: start with \(10^{-5} \)
ray-sphere intersection

point on a ray: $\mathbf{P}(t) = \mathbf{E} + td$

point on a sphere: $|\mathbf{P}(t) - \mathbf{C}| = R$

by substitution: $|\mathbf{E} + td - \mathbf{C}| = R$
ray-sphere intersection

algebraic equation: \(at^2 + bt + c = 0 \)
with: \(a = |d|^2, b = 2d \cdot (E - C), c = |E - C|^2 - R^2 \)
determinant: \(d = b^2 - 4ac \)
no solution for \(d < 0 \)
ray-sphere intersection

two solutions: \(t_{\pm} = \left(-b \pm \sqrt{d} \right) / (2a) \)
pick smallest \(t \) such that \(t \in (t_{\text{min}}, t_{\text{max}}) \)
ray-sphere intersection

- shading frame at $\mathbf{P} = \mathbf{f}_0$ with normal $\mathbf{n} = \mathbf{f}_z$ with
 - $\mathbf{P} = \mathbf{E} + td$ and $\mathbf{P}^l = (\mathbf{P} - \mathbf{C})/R$
 - $\theta = \arccos P_z^l$ and $\phi = \arctan(P_y^l, P_x^l)$
- $\mathbf{f} = \{\mathbf{P}, \mathbf{x}, \mathbf{y}, \mathbf{P}^l\}$, where $\mathbf{x} = (\sin \phi, \cos \phi, 0)$, $\mathbf{y} = (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$
ray-plane intersection

point on a ray: \(\mathbf{P}(t) = \mathbf{E} + td \)

point on a plane: \((\mathbf{P}(t) - \mathbf{C}) \cdot \mathbf{n} = 0 \)

by substitution: \((\mathbf{E} + td - \mathbf{C}) \cdot \mathbf{n} = 0 \)
ray-plane intersection

one solution for $\mathbf{d} \cdot \mathbf{n} \neq 0$, no/infinite solutions otherwise

$$t = \frac{(\mathbf{C} - \mathbf{E}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

check that $t \in (t_{min}, t_{max})$
• shading frame: $f = \{e + td, u, v, n\}$
ray-triangle intersection

point on ray: \(\mathbf{P}(t) = \mathbf{E} + td \)

point on triangle: \(\mathbf{P}(\alpha, \beta) = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C} \)

by substitution: \(\mathbf{E} + td = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C} \)
Ray-triangle intersection

\[E + td = \alpha(A - C) + \beta(B - C) + C \rightarrow \]

\[\alpha(A - C) + \beta(B - C) - td = E - C \rightarrow \]

\[\alpha a + \beta b - td = e \rightarrow \]

\[\begin{bmatrix} -d & a & b \end{bmatrix} \begin{bmatrix} t \\ \alpha \\ \beta \end{bmatrix} = e \]
ray-triangle intersection

use Cramer's rule

\[t = \frac{\begin{vmatrix} e & a & b \\ -d & a & b \end{vmatrix}}{\begin{vmatrix} -d & a & b \end{vmatrix}} = \frac{(e \times a) \cdot b}{(d \times b) \cdot a} \]

\[\alpha = \frac{\begin{vmatrix} -d & e & b \\ -d & a & b \end{vmatrix}}{\begin{vmatrix} -d & a & b \end{vmatrix}} = \frac{(d \times b) \cdot e}{(d \times b) \cdot a} \]

\[\beta = \frac{\begin{vmatrix} -d & a & e \\ -d & a & b \end{vmatrix}}{\begin{vmatrix} -d & a & b \end{vmatrix}} = \frac{(e \times a) \cdot d}{(d \times b) \cdot a} \]

test for

\[t \in (t_{\text{min}}, t_{\text{max}}), \alpha \geq 0, \beta \geq 0, \alpha + \beta \leq 1 \]
ray-triangle intersection

- shading frame: \(\mathbf{f} = \{ \mathbf{e} + t \mathbf{d}, \mathbf{u}, \mathbf{v}, \mathbf{n} \} \)
 - create frame by orthonomalization with
 \[
 \mathbf{z}' = (\mathbf{B} - \mathbf{A}) \times (\mathbf{C} - \mathbf{A}), \mathbf{x}' = (\mathbf{B} - \mathbf{A})
 \]
intersection and coord systems

- transform the object
 - simple for triangles, since they transform to triangles
 - but objects may require more complex intersection tests
- transform the ray
 - much more elegant
 - works on any surface
 - allow for much simpler intersection tests
intersection and coord systems

- ray $\mathbf{r} = \{\mathbf{E}, \mathbf{d}\}$ wrt \mathbf{f} (e.g. *world*)
- object \mathcal{O}' defined wrt \mathbf{f}' (in turn defined wrt \mathbf{f})
- transform rays $\mathbf{r}' = \{\mathbf{E}', \mathbf{d}'\}$
 - transform origin/direction as point/vector
- intersect object \mathcal{O}' with transformed ray \mathbf{r}'
 - use standard intersection tests
- transform intersection frame back to \mathbf{f}
 - transform origin/axes as point/vectors
image so far
intersecting many shapes

- intersect each primitive
- pick closest intersection
- essentially a line search

visible point
intersecting many shapes -- pseudocode

minDistance = infinity
hit = false
foreach surface s {
 if(s.intersect(ray,intersection)) {
 if(intersection.distance < minDistance) {
 hit = true;
 minDistance = intersection.distance;
 }
 }
}

image so far
shading

for each pixel {
 determine viewing direction
 intersect ray with scene
 -> compute illumination
 store result in pixel
}
shading

variation in observed color across a surface
shading

• compute reflected light
• depends on:
 ◦ view position
 ◦ incoming light, i.e. lighting
 ◦ surface geometry
 ◦ surface material
real-world materials

Metals

Dielectric

[Marschner 2004]
real-world materials

Metals

Dielectric

[Marschner 2004]

[Marschner 2004]
shading models

- empirical models
 - produce believable images
 - simple and efficient
 - only for simple materials
- physically-based shading models
 - can reproduce accurate effects
 - more complex and expensive
- will concentrate on empirical models first
shading model

• shading model: diffuse + specular reflection
• diffuse reflection
 ◦ light is reflected in every direction equally
 ◦ colored by surface color
• specular reflection
 ◦ light is reflected only around the mirror direction
 ◦ white for plastic-like surfaces (glossy paints)
 ◦ colored for metals (brass, copper, gold)
incident light

- beam of light is more spread on oblique surfaces
- incident light depends on angle
- light fraction: $f = |\mathbf{n} \cdot \mathbf{l}|$
surface reflectance

- surface reflectance is described by the BRDF, *bidirectional surface distribution functions*
- BRDF is simple for simple shading models
- in general, the BRDF is a function of incoming and outgoing angles $\rho(l, v; f)$
 - l is the direction from the point to the light
 - v is the direction from the point to the viewer
 - f is the local shading frame that describes surface orientation (normal and tangent)
lambert diffuse model

- simple and efficient diffuse model
- light is scattered uniformly in all directions
- brdf: $\rho_d(l, v; f) = k_d$
- surface color: $C_d = \rho_d(l, v; f) \cdot |\mathbf{n} \cdot \mathbf{l}| = k_d |\mathbf{n} \cdot \mathbf{l}|$
lambert diffuse model

- produce matte appearance

left-to-right: increasing kd
image so far
phong specular model

- empirical, used to look good enough
- cosine of mirror \mathbf{r} and view \mathbf{v} direction
- reflected direction: $\mathbf{r} = -\mathbf{l} + 2(\mathbf{n} \cdot \mathbf{l})\mathbf{n}$
- BRDF: $\rho_s(l, v; f) = k_s \max(0, v \cdot r)^n$
- $C_s = \rho_s(l, v; f) \cdot |\mathbf{n} \cdot \mathbf{l}| = k_s \max(0, v \cdot r)^n \cdot |\mathbf{n} \cdot \mathbf{l}|$
phong specular model

- produces highlight, shiny appearance

left-to-right: increasing n, top-to-bottom: increasing k_s
blinn specular model

- slightly better than Phong
- cosine of bisector \(\mathbf{h} \) and normal \(\mathbf{n} \)
- bisector: \(\mathbf{h} = (\mathbf{l} + \mathbf{v})/|\mathbf{l} + \mathbf{v}| \)
- \(\text{brdf: } \rho_s(\mathbf{l}, \mathbf{v}; \mathbf{f}) = k_s \max(0, \mathbf{n} \cdot \mathbf{h})^n \)
- \(C_s = \rho_s(\mathbf{l}, \mathbf{v}; \mathbf{f}) \cdot |\mathbf{n} \cdot \mathbf{l}| = k_s \max(0, \mathbf{n} \cdot \mathbf{h})^n \cdot |\mathbf{n} \cdot \mathbf{l}| \)
image so far
lighting

patterns of illumination in the environment
lighting

- determines how much light reaches a point
- depends on:
 - light geometry
 - light emission
 - scene geometry
light source models

- describe how light is emitted from light sources
- empirical light source models
 - point, directional, spot
- physically-based light source models
 - area light, sky model
point lights

- light is emitted equally from a point S in all directions
- simulate local lighting, different at each surface point P
- light direction: $I = (S - P)/|S - P|$
- light color: $L = k_i/|S - P|^2$
directional lights

- light is emitted from infinity in one direction \(\mathbf{d} \)
- simulate distant lighting, e.g. sun, same at all surface points \(\mathbf{P} \)
- light direction: \(\mathbf{l} = \mathbf{d} \)
- light color: \(L = k_l \)
spot lights

- same as points lights, but only emits in a cone around d
- simulate theatrical lights
- cone falloff model arbitrary
- light direction: $l = (S - P)/|S - P|$
- light color: $L = k_l \cdot \text{attenuation}/|S - P|^2$
shading model with multiple lights

- add contribution of all lights i for diffuse and specular

$$C = \sum_i L_i \cdot (\rho_d (l_i, v; f) + \rho_s (l_i, v; f)) \cdot |n \cdot l_i|$$

- for Lambert and Phong

$$C = \sum_i L_i \cdot (k_d + k_s \max(0, v \cdot r_i)^n) \cdot |n \cdot l_i|$$

- for Lambert and Blinn

$$C = \sum_i L_i \cdot (k_d + k_s \max(0, n \cdot h_i)^n) \cdot |n \cdot l_i|$$
image so far
illumination models

- describe how light spreads in the environment
- direct illumination
 - incoming light comes directly from light sources
 - shadows
- indirect illumination
 - incoming light comes from other objects
 - specular reflections (mirrors)
 - diffuse inter-reflections
illumination models

[PCG]
ray tracing lighting model

- point/directional/spot light sources
- sharp shadows
- sharp reflection/refractions
- hacked diffuse inter-reflection: ambient term
ray traced shadows

- light contributes only if visible at surface point

no shadow

- viewer
- light
- point

shadow

- viewer
- light
- occluder
- point
ray traced shadows

- send a *shadow* ray to check if light is visible
- visible if no hits or if t more than light distance
ray traced shadows

- shadow ray \(\mathbf{r} = \mathbf{P} + t\mathbf{l} \) with \(t \in (t_{\text{min}}, t_{\text{max}}) \)
 - spot/point lights at \(\mathbf{S} \): \(t_{\text{max}} = \text{length}(\mathbf{S} - \mathbf{P}) \)
 - directional lights: \(t_{\text{max}} = \infty \)
- scale lighting by visibility term \(V_i(\mathbf{P}) \) which is 0 or 1

\[
C = \sum_i L_i \cdot V_i(\mathbf{P})(\rho_d + \rho_s)|\mathbf{n} \cdot \mathbf{l}_i|
\]

- implementation detail: numerical precision
 - shadow acne: ray hits the visible point
 - solution: only intersect if \(t > \epsilon \), i.e. \(t_{\text{min}} = \epsilon \)
image so far
ambient term hack

- light bounces even in diffuse environment
 - ceiling are not black
 - shadows are not perfectly black
- very expensive to compute
- approximate (poorly) with a constant term

\[C = k_d L_a + \sum_i L_i \cdot V_i(P)(\rho_d + \rho_s)|n \cdot l_i| \]
ray traced reflections and refractions

- perfectly shiny surfaces reflects objects
- recursively trace a ray if material is reflective or refractive
ray traced reflections and refractions

- reflections: along mirror direction \(\mathbf{r} = -\mathbf{l} + 2(\mathbf{l} \cdot \mathbf{n})\mathbf{n} \)
scaled by \(k_r \)
- refractions: along refraction direction scaled by \(k_t \)

\[
C = k_d L_a + \sum_i L_i \cdot V_i(\mathbf{P})(\rho_d + \rho_s)|\mathbf{n} \cdot \mathbf{l}_i| + \\
+ k_r \text{ raytrace}(\mathbf{P}, \mathbf{r}) + k_t \text{ raytrace}(\mathbf{P}, \mathbf{t})
\]

- implementation detail: recursion
 - avoid hitting visible point: \(t_{min} > \epsilon \)
 - make sure you do not recurse indefinitely
image so far
antialiasing
antialiasing: removing jaggies

1 sample/pixel

9 sample/pixel
antialiasing: removing jaggies

poor-man antialiasing:

• for each pixel
 ○ take multiple samples
 ○ compute average
ray tracing pseudocode

for (i = 0; i < imageWidth; i++) {
 for (j = 0; j < imageHeight; j++) {
 u = (i + 0.5)/imageWidth;
 v = (j + 0.5)/imageHeight;
 ray = camera.generateRay(u,v);
 c = computeColor(ray);
 image[i][j] = c;
 }
}
}
for(i = 0; i < imageWidth; i ++) {
 for(j = 0; j < imageHeight; j ++) {
 color c = 0;
 for(ii = 0; ii < numberOfSamples; ii ++) {
 for(jj = 0; jj < numberofSamples; jj ++) {
 u = (i+(ii+0.5)/numberOfSamples)/imageWidth;
 v = (j+(jj+0.5)/numberofSamples)/imageHeight;
 ray = camera.generateRay(u,v);
 c += computeColor(ray);
 }
 }
 image[i][j] = c / (numberOfSamples^2);
 }
}
image so far