parametric spline curves

curves

• used in many contexts
 – fonts
 – animation paths
 – shape modeling

• different representation
 – implicit curves
 – parametric curves
 • mostly used
implicit representation for 2D curves

- curves can be represented implicitly as
 \[f(p) = f(x, y) = 0 \]

- example: circle of radius \(r \) centered at origin
 \[x^2 + y^2 - r^2 = 0 \]

parametric representation for 2D curves

- curves can be represented parametrically as
 \[
 p(u) = \begin{cases}
 x = f_x(u) \\
 y = f_y(u)
 \end{cases}
 \]

- example: circle of radius \(r \) centered at origin
 \[
 \begin{cases}
 x = r \cos(u) \\
 y = r \sin(u)
 \end{cases}
 \]
parametric representation of splines

• general parametric curve can be written as
 \[p(t) = f(t) \quad t \in [0, N] \]

• goals when defining \(f \)
 – smoothness
 – predictable and local control
 – efficiency

parametric representation of splines

• splines: piecewise parametric polynomials
 – polynomials are smooth
 – controlled by small number of local control points
 – discontinuities at integer intervals

\[p(t) = f(t) \quad t \in [0, N] \]
splines - intuition

• define segment by “blending” *control points*

• join segments to form curve

defining splines

• pick segment interpolating function
• impose constraints to define segments
 – i.e. control points that define the spline
• impose constraints to join segments together
interpolating vs. approximating splines

- interpolating
 - pass through control points
- approximating
 - guided by control points

smoothness

- smoothness described by degree of continuity
 - C^0: same position at each side of joints
 - C^1: same tangent at each side of joints
 - C^2: same curvature at each side of joints
 - C^n: n-th derivative defined at joints
control

- **local control**
 - changing control points only affect locally the curve
 - easy to control
 - true for all splines

control

- **convex hull property**
 - convex hull: smallest convex region enclosing all points
 - predictable behavior
 - more efficient operations
 - only some splines

*computer graphics • parametric curves © 2009 fabio pellacini • 11

computer graphics • parametric curves © 2009 fabio pellacini • 12
efficiency

• affine invariance
 – transforming the spline same as transforming controls
 – efficient algorithms, esp. combined with convex hull
 – true for all used splines

piecewise linear splines

• each segment is a linear function
 \[p(t) = ta + b \quad t \in [0,1] \]

• impose endpoint constraints
 \[
 \begin{cases}
 p(0) = p_0 \\
 p(1) = p_1
 \end{cases} \Rightarrow \begin{cases}
 a = p_1 - p_0 \\
 b = p_0
 \end{cases}
 \]
 \[p(t) = p_0 + t(p_1 - p_0) \quad t \in [0,1] \]
point blending interpretation

• can interpret as blending of points
 \[p(t) = (1-t)p_0 + tp_1 = b_0(t)p_0 + b_1(t)p_1 \quad t \in [0,1] \]

• blending functions do not depend on points
 – different intervals only change control points

![Graph showing point blending]

matrix notation

• write blending functions more conveniently
 \[p(t) = (1-t)p_0 + tp_1 \]
 \[p(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \]
joining line segments

- impose C^0 continuity at joints
 - first segment
 \[p^0(t) \rightarrow \begin{cases} p^0(0) = p_0 \\ p^0(1) = p_1 \end{cases} \]
 - second segment
 \[p^1(t) \rightarrow \begin{cases} p^1(0) = p_0 \\ p^1(1) = p_1 \end{cases} \]
 - implies
 \[p^0(1) = p^1(0) \rightarrow p^0_1 = p^1_0 \]

- general formula
 - appropriately rename control points
 \[p(t) = b_0(t-k)p_k + b_1(t-k)p_{k+1} \quad t \in [0,N], k = \text{floor}(t) \]

Hermite splines

- each segment is a cubic polynomial function
 \[p(t) = at^3 + bt^2 + ct + d \]
- impose endpoints and tangents constraints
 \[\begin{cases} p(0) = p_0 \\ p(1) = p_1 \\ p'(0) = p'_0 \\ p'(1) = p'_1 \end{cases} \]
Hermite splines

\[p(t) = at^3 + bt^2 + ct + d \]
\[p'(t) = 3at^2 + 2bt + c \]

\[p(0) = d \]
\[p(1) = a + b + c + d \]
\[p'(0) = c \]
\[p'(1) = 3a + 2b + c \]

\[a = 2p_0 - 2p_1 + p'_0 + p'_1 \]
\[b = -3p_0 + 3p_1 - 2p'_0 - p'_1 \]
\[c = p'_0 \]
\[d = p_0 \]

Hermite

- matrix formulation

\[p(t) = \begin{bmatrix} t^3 & t^2 & t^1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 2 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p'_0 \\ p'_1 \end{bmatrix} \]

- blending functions
Beziers Splines

- Hermite splines has points and vectors controls
 - would like to use just points
 - insight: specify tangents as difference of points
 - choose appropriate scaling value, see later

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
q_0 \\
q_1 \\
q_2 \\
q_3 \\
\end{bmatrix}
= \begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3 \\
\end{bmatrix}
\]

Beziers Splines

\[
p(t) = \begin{bmatrix}
t^3 \\
t^2 \\
t \\
1 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
q_0 \\
q_1 \\
q_2 \\
q_3 \\
\end{bmatrix}
\]
Bezier splines

- blending functions

![Bezier splines diagram]

piecewise cubic splines – smoothness

- \(C^1 \) at joints by imposing equal tangents
 - Hermite: same tangents
 - Bezier: collinear control points
 - geometric continuity if length of tangent differs

![Piecewise cubic splines diagram]
piecewise cubic splines – control

- **local control**
 - comes from the formulation by segments
 - for each segment, curve defined by 4 control points

- **convex hull**
 - when blending positions

 \[b_i(t) \geq 0 \quad \text{and} \quad \sum_{i=0}^{3} b_i(t) = 1 \]

piecewise cubic splines – affine invariance

- **affine invariance**
 - affine is combination of linear and translation
 - blending functions sum to 1

\[
X(p(t)) = M p(t) + t = M \left(\sum_{i=0}^{3} b_i(t) p_i \right) + t = \\
= \sum_{i=0}^{3} b_i(t) M p_i + \sum_{i=0}^{3} b_i(t) t = \\
= \sum_{i=0}^{3} b_i(t) (M p_i + t) = \sum_{i=0}^{3} b_i(t) X(p_i)
\]
Beziers splines

- widely used, especially in 2D
 - primitive in PDF
- represent C^1 and C^0 curves with corners
- easily add point at any position

Catmull-Rom splines

- interpolating spline
 - no convex hull property
- as Hermite, derivatives automatically determined
 - using adjacent control points
 - end tangent using either adding point or zers
Catmull-Rom splines

\[p'_k = \frac{p_{k+1} - p_{k-1}}{2} \]

drawing splines

- approximate with a sequence of line segments
 - efficiency: fast evaluation, small number of segments
 - guarantees on accuracy
- approaches
 - uniform subdivision in \(t \) (fast)
 - recursive subdivision (small number of segments)
uniform subdivision

- evaluate spline at fixed t intervals
 - can be done efficiently

adaptive subdivision - Bezier

- recursively subdivide spline
- until line segments approximate well curve
De Casteljau algorithm - Bezier

- recursively do
 - connect midpoints of the control polygons
 - connect midpoints of the new segments
 - the midpoint of this last segment is on the curve
 - and splits the curve in two Bezier segments
- stop when control polygon is close to collinear

B-Splines

- would like C^2 continuity at joints
 - give up interpolation
- impose 3 continuity constraints at joints

$$p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} q_{k-1} \\ q_k \\ q_{k+1} \\ q_{k+2} \end{bmatrix}$$
other splines

• many other types

• non-uniform B-splines
 – discontinuities not evenly spaces

• non-uniform rational B-splines (NURBS)
 – ratios of non-uniform B-splines
 – invariance under perspective
 – can represent conic sections exactly
 – often used in 3D

spline equivalence

• all splines seen so far are equivalent
 – represented by 4x4 matrices

• can convert control points from one to other
 – algorithms can be based on the most efficient
 – UIs can be based on the most user-friendly
2D vs. 3D splines

- often use 2D splines in 3D
 - by projecting onto a plane
- 3D parametric splines have same formulation
 - just use 3D vectors vs. 2D ones