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Geometric Transformations
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Linear Algebra Review

• Matrices
– notation
– basic operations
– matrix-vector multiplication
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Matrices

• Notation for matrices and vectors
– use column form for vectors
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Matrix Operations

• Addition

• Scalar Multiply

• Transpose
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Matrix Operations

• Matrix-Matrix Multiply
– row-column multiplication
– not commutative
– associative
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Matrix Operations

• Matrix-Vector Multiply
– row-column multiplication
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Special Matrices

• Identity

• Zero
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Matrix Operations

• Transpose
– flip along the diagonal

• Inverse
– will not compute explicitly in this course

][][ jiij
T mtMT =⇒=
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Matrix Operations Properties

• Linearity of multiplication

• Associativity of multiplication

• Transpose and Inverse of Matrix Multiply
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Geometric Transformation

• Function that maps points to points

• Different transformations have restriction on the 
form of M
– we will look at linear, affine and projections

)(' ppp X=→
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2D Transformations
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Translation

• Simplest form
• Inverse

tppt +=)(T
tppp tt −== −
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Linear Transformation

• fundamental property

• can be represented in matrix form

• other properties
– maps origin to origin
– maps lines to lines
– parallel lines remain parallel
– length ratios are preserved
– closed under composition
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Uniform Scale
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Non-uniform Scale
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Rotation
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Shear
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Reflection
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Combining translation and linear transforms

• represent linear together with translation
– rigid body transformation are a subset of this

• goal: unified format for all transformations

tppt += MX M )(,
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Homogeneous coordinates

• represent points with 1 additional coordinate w
– set it to 1 for points
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Homogeneous coordinates

• represent translation with a 3x3 matrix

• add one row and column to linear transforms
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Affine Transformations

• combining linear and translation in one matrix

• properties
– does not map origin to origin
– maps lines to lines
– parallel lines remain parallel
– length ratios are preserved
– closed under composition
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Affine Transformations
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Compositing transformations

• applying one transformation after another
– expressed by function composition

• for the transforms presented before, 
computed by matrix multiplication
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Compositing transformations

• translation

• linear transformations

• affine transformations
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Compositing Transformations

• composition is not commutative

rotate, 
then translate

translate, 
then rotate
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Compositing Transformations

• composition is not commutative

rotate, 
then translate

translate, 
then rotate
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Compositing Transformations

• composition is not commutative

rotate, 
then translate

translate, 
then rotate
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Complex Transformation

• often represented as combination of simpler ones
– intuitive geometric interpretation

• rotation around arbitrary axis
– translate to axis center
– rotate
– translate back

aaa TRTR θθ −=,
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Rotation around arbitrary axis
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Rotation around arbitrary axis
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Rotation around arbitrary axis
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Rotation around arbitrary axis
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Transforming points and  vectors

• points and vectors are different entities
– vectors: encode direction (difference of points)
– points: encode position (origin plus a vector)

• points and vector transform differently
– we have shown how points transforms previously
– vectors simply ignore the translation
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Transforming points and vectors

• use homogeneous coordinates with w=0

• everything is consistent!

• but what is that “w” anyway?
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Homogeneous Coordinates

• points
– will become useful later on

• vectors
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Coordinate Systems Review

• points are represented wrt a coordinate system
– cartesian coordinates in the canonical coord. system

• canonical coordinate system
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Coordinate System Review

• write a point in a new coordinate system

• can be represented as an affine matrix multiply
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Coordinate System Review

• an affine transform is a change of coord. system
– another interpretation for combination of transforms

• what is the matrix I should use to change coord?
– just invert previous definition

• i.e. invert combination of translation and orthonormal
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3D Transformations
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2D to 3D transformations

• adopt homogeneous formulation in 3d
– points have 4 coordinates
– use 4x4 matrices for transformations

• most concept generalize very easily
– rotation much more complex
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Affine Transformations
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Affine Transformations
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Affine Transformations
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Rotation around arbitrary axis

• in 2d, rotation are around a point
– change coordinate frame (translation)
– rotate around the origin
– change coordinate frame back
– simple geometric construction

• in 3d, they are around an axis
– change coordinate frame (align z with axis)
– rotate around z axis
– change coordinate frame back
– complex geometric construction
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Rotation around arbitrary axis

• use a change of coordinate system
– define new coordinate system with z’ parallel to axis 

and origin on the axis

• build transform matrix as seen previously
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Construct 3d frame from vectors

• given two non-parallel vectors a and b
– i.e. a plane
– set x, y parallel to a, b
– x = a / |a|

z = x × b; z = z / |z|
y = z × x

• given the vector a
– set z parallel to a, choose arbitrary x, y
– continue as above
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Transforming normals

• points and vectors works
• tangents, i.e. differences of points, works too
• normals works differently

– defined as orthogonal to the transformed surface
– i.e. orthogonal to all tangents
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Transforming normals

• by definition
• after transform
• for all t, we have
• which gives

• normals are transformed by the inverse transpose
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Transformation Hierarchies

• often need to transform an object wrt another
– e.g. the computer on the table
– when the table moves, the computer moves

• naturally build a hierarchy of transformation
– to transform the table, apply its transform
– to transform the computer, apply the table and the 

computer transform
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Transformation Hierarchies

• represented as a tree data structure
– transformation nodes
– object nodes - leaves

• walk the tree when drawing
• very convenient representation for objects

– all objects can be defined in their simplest form
– e.g. every sphere can be represented by a 

transformation applied to the unit sphere
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Transformation Hierarchies

root

transform transform

sphere triangle transform sphere

triangle sphere
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Implementing Transformation Hierarchies

• transformation function for each node
– get the parent function
– apply the transform
– pass the combined transform when calling children

• stack of transforms
– push/pop when walking down/up
– used by graphics libraries (OpenGL)
– more flexible
– generalized mechanism for all attributes
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Raytracing and Transformations

• transform the object
– simple for triangles

• since they transforms to triangles

– but most objects require complex intersection tests
• spheres do not transforms to spheres, but ellipsoids

• transform the ray
– much more elegant
– works on any surface
– allow for much simpler intersection tests

• only worry about unit sphere, all others are transformed

Computer Graphics • Transforms © 2005 Fabio Pellacini • 55

Raytracing and Transformations

• transforming rays
– transform origin/direction as point/vector
– note that direction is not normalized now

• i.e. ray parameter is not the distance

• intersect a transformed object
– transform the ray by matrix inverse
– intersect surface
– transform hit point and normal by matrix


