Geometric Transformations

Computer Graphics « Transforms © 2005 Fabio Pellacini « 1

Linear Algebra Review

e Matrices
- notation
- basic operations
- matrix-vector multiplication

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 2

Matrices

« Notation for matrices and vectors
- use column form for vectors

o™ W] et

m21 m22 V2

Computer Graphics = Transforms © 2005 Fabio Pellacini = 3

Matrix Operations

= Addition

T=M+N :>[tij]:[mij +nij]
e Scalar Multiply

T=aoM :>[tij] =[amij]

e Transpose

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 4

Matrix Operations

e Matrix-Matrix Multiply
- row-column multiplication
- not commutative
- associative

T =MN = [t;] {;miknkj}
|: t12 :| — |:m11 m12 :|{n11
1:21 1:22 m21 m22 n

Computer Graphics = Transforms

n12 }
n22

© 2005 Fabio Pellacini « 5

Matrix Operations

e Matrix-Vector Multiply
- row-column multiplication

u= Mv:[ui]:{Zmikvk}

|:}_{ 11 m12j| Vi
U, My My |11V

Computer Graphics = Transforms © 2005 Fabio Pellacini = 6

Special Matrices

e |dentity
. 1 fori=j
IZ[Iij]: C
0 fori=j

MI=IM=M
e Zero
O=|o;]|=0 o)
M+O0=M

Computer Graphics = Transforms

o 1]

oo

© 2005 Fabio Pellacini « 7

Matrix Operations

e Transpose
- flip along the diagonal
T=M' :[tij]:[mji]
e Inverse

- will not compute explicitly in this course
T=M"=TM=MM*=M"M =1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 8

Matrix Operations Properties

Geometric Transformation

e Linearity of multiplication
a(A+B)=aA+aB
M(A+B)=MA+MB

= Associativity of multiplication
A(BC) =(AB)C

e Transpose and Inverse of Matrix Multiply

(AB)” =BT A"
(AB) ' =B?A’

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 9

e Function that maps points to points
p—p'=X(p)

« Different transformations have restriction on the
form of M
- we will look at linear, affine and projections

Computer Graphics = Transforms © 2005 Fabio Pellacini = 10

2D Transformations

Computer Graphics « Transforms

© 2005 Fabio Pellacini = 11

Translation

e Simplest form T,(p)=p+t

-1
« Inverse T, (p) =T (p)=p-t
A A
> >
Computer Graphics = Transforms © 2005 Fabio Pellacini « 12

Linear Transformation

Uniform Scale

« fundamental property

X(ap+£a)=aX(p)+ X (q)
= can be represented in matrix form

X(p) =Mp
e other properties

- maps origin to origin
maps lines to lines
parallel lines remain parallel
length ratios are preserved
closed under composition

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 13

so=lg ol

—1

B

Computer Graphics = Transforms © 2005 Fabio Pellacini « 14

Non-uniform Scale

Rotation

wils

S (178 Usy)

B

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 15

R D cosé —sine pxcosH—pysina
P sing cosé? | p,sin@+ p,cosé

R—l

lﬁ

© 2005 Fabio Pellacini = 16

Computer Graphics = Transforms

Shear

CG CG

> >

Computer Graphics = Transforms © 2005 Fabio Pellacini « 17

Reflection

-1 0 Py — Py
RlLp = - RIp=..
P {0 J{pj {p} P

e @D

' ot :
© 2005 Fabio Pellacini = 18

Computer Graphics = Transforms

Combining translation and linear transforms

e represent linear together with translation
- rigid body transformation are a subset of this

XM,t(p): Mp+t

e goal: unified format for all transformations

Computer Graphics = Transforms © 2005 Fabio Pellacini « 19

Homogeneous coordinates

e represent points with 1 additional coordinate w
- set it to 1 for points

Px Py
P=| By |=]| Py
Pl L1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 20

Homogeneous coordinates

Affine Transformations

e represent translation with a 3x3 matrix
1 0 tX px pX +tX
Tp=|0 1 t | p, =[P+t
0 0 1|1 1

e add one row and column to linear transforms
m, m, 0 np, My, Py + My, P,
Mp={my, m, O p,|=|mMyp,+mMyp,
0 0O 1|1 1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 21

e combining linear and translation in one matrix

T—M+t—NItp
P=MPFL= g 91

e properties

- does not map origin to origin
maps lines to lines
parallel lines remain parallel
length ratios are preserved
closed under composition

Computer Graphics = Transforms © 2005 Fabio Pellacini « 22

Affine Transformations

Compositing transformations

1 0 t
translation T,=10 11,
0 01
s, 0 O
scale S;=[{0 s, O
0 0 1
cosgd -sing O
rotation R,=|sing@ cos6é O
0 0 1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 23

= applying one transformation after another
- expressed by function composition

p'= X, (X,(p)) = (X, o X)(p)

» for the transforms presented before,
computed by matrix multiplication

(X, 0o X))(P) = X, (X (p)) =M, (Mp) = (M,M,)(p)

Computer Graphics = Transforms © 2005 Fabio Pellacini = 24

Compositing transformations

e translation

o ilo il

e linear transformations

I |

e affine transformations

-[3 T8
" 3

Compositing Transformations

e composition is not commutative

A

CG

A

CG

MZ t2 Ml tl p MZMl I\/|2t1+t2 p >
0 100 11| | o0 1 1 rotate, translate,
then translate then rotate
Computer Graphics = Transforms © 2005 Fabio Pellacini « 25 Computer Graphics = Transforms © 2005 Fabio Pellacini = 26
Compositing Transformations Compositing Transformations
e composition is not commutative e composition is not commutative
A A A A
c© c©
e @G
> >
rotate, translate, rotate, translate,

then translate

Computer Graphics = Transforms

then rotate

© 2005 Fabio Pellacini = 27

then translate

Computer Graphics = Transforms

then rotate

© 2005 Fabio Pellacini = 28

Complex Transformation

e often represented as combination of simpler ones

- intuitive geometric interpretation

e rotation around arbitrary axis
- translate to axis center
- rotate
- translate back

Ra,a = Tfa RBTa

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 29

Rotation around arbitrary axis

CG

Computer Graphics = Transforms

© 2005 Fabio Pellacini « 30

Rotation around arbitrary axis

Ce—

Computer Graphics = Transforms

© 2005 Fabio Pellacini « 31

Rotation around arbitrary axis

S —

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 32

Rotation around arbitrary axis

Computer Graphics = Transforms © 2005 Fabio Pellacini « 33

Transforming points and vectors

e points and vectors are different entities
- vectors: encode direction (difference of points)
- points: encode position (origin plus a vector)

e points and vector transform differently
- we have shown how points transforms previously
- vectors simply ignore the translation

V=p-(
X(p)=Mp+t
X(v)=(Mp+t)-(Mg+t)=M(p-q)

Computer Graphics = Transforms © 2005 Fabio Pellacini = 34

Transforming points and vectors

= use homogeneous coordinates with w=0

M t|v B Mv
0 1jo0] |0
e everything is consistent!

e but what is that “w” anyway?

Computer Graphics = Transforms © 2005 Fabio Pellacini « 35

Homogeneous Coordinates

e points
- will become useful later on
Py wp,
(py py)E Py |=| WP,
1 w
e vectors
VX
(Vx’Vy)E Vy
0

Computer Graphics = Transforms © 2005 Fabio Pellacini = 36

Coordinate Systems Review

e points are represented wrt a coordinate system
- cartesian coordinates in the canonical coord. system

P=(P,Py) & P=0+pX+pYy=0+(X-p)X+(Yy-p)y

= canonical coordinate system

0=(0,0)
X = (1,0)
y=(01)

Computer Graphics = Transforms © 2005 Fabio Pellacini « 37

Coordinate System Review

e write a point in a new coordinate system
p'=(p'. p'y) & Pp=0+(X"p)X+(y"p)y'=0+p’, X+p', ¥’

= can be represented as an affine matrix multiply

pX pIX X X yIX O X p'X
p, [=M| Py =X, Yy, O,|Pp,
1 1 0 0 1 1

HRUHEHEIH

Computer Graphics = Transforms © 2005 Fabio Pellacini = 38

Coordinate System Review

= an affine transform is a change of coord. system
- another interpretation for combination of transforms
e what is the matrix | should use to change coord?

- just invert previous definition
= j.e. invert combination of translation and orthonormal

R R H

X, X, -0,
M—].: ylx yly _Oly
0O O 1

Computer Graphics = Transforms © 2005 Fabio Pellacini « 39

3D Transformations

Computer Graphics = Transforms © 2005 Fabio Pellacini = 40

2D to 3D transformations

Affine Transformations

- adopt homogeneous formulation in 3d 100 ¢
- points have 4 coordinates _ 010t
- use 4x4 matrices for transformations translation Tt - 00 1 t
)) 0 0O
e most concept generalize very easily - -
- rotation much more complex s, 0 0 O]
0 S, 0 O
scale S, =
0 0 s, O
0 0 0 1
Computer Graphics = Transforms © 2005 Fabio Pellacini = 41 Computer Graphics = Transforms © 2005 Fabio Pellacini = 42
Affine Transformations Affine Transformations
cos@ —sind 0 O] [cosd 0 singd O]
rotation around z R — sing cos¢ 0 0 rotation around y RY — c 1 0 0
0 0 0 10 ° |-sin@ 0 cos@® O
0 0 0 1] 0 0 0 1
1 0 0 0]
_ RY _ 0 cosfd -sing O
rotation around X '~|0 sing cosd O
0 0 0 1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 43

Computer Graphics = Transforms

© 2005 Fabio Pellacini = 44

Rotation around arbitrary axis

Rotation around arbitrary axis

= in 2d, rotation are around a point R, , =T R,T,
change coordinate frame (translation)

rotate around the origin

change coordinate frame back

simple geometric construction

- in 3d, they are around an axis R., =F.'R,F,
change coordinate frame (align z with axis)

rotate around z axis

change coordinate frame back

complex geometric construction

Computer Graphics = Transforms © 2005 Fabio Pellacini = 45

e use a change of coordinate system

- define new coordinate system with z’ parallel to axis
and origin on the axis

e build transform matrix as seen previously

I:_1:x' y' z' 0o
0O 0 0 1

Computer Graphics = Transforms © 2005 Fabio Pellacini = 46

Construct 3d frame from vectors

Transforming normals

= given two non-parallel vectors a and b

- i.e. aplane

- set x, y parallel to a, b

- x=a/ |aj
z=xxbh;z=2z/|z]
y=zxX

e given the vector a
- set z parallel to a, choose arbitrary x, y
- continue as above

Computer Graphics = Transforms © 2005 Fabio Pellacini = 47

e points and vectors works
e tangents, i.e. differences of points, works too

e normals works differently
- defined as orthogonal to the transformed surface
- i.e. orthogonal to all tangents

O o @&

Computer Graphics = Transforms © 2005 Fabio Pellacini = 48

Transforming normals

« by definition t-n=t'n=0
 after transform (Mt)" (Xn)=0
- for all t, we have t'tM™Xn=0
= which gives t'tMT(MT)*n=0

normals are transformed by the inverse transpose

Computer Graphics = Transforms © 2005 Fabio Pellacini = 49

Transformation Hierarchies

e often need to transform an object wrt another
- e.g. the computer on the table
- when the table moves, the computer moves

e naturally build a hierarchy of transformation
- to transform the table, apply its transform

- to transform the computer, apply the table and the
computer transform

Computer Graphics = Transforms © 2005 Fabio Pellacini « 50

Transformation Hierarchies

e represented as a tree data structure
- transformation nodes
- object nodes - leaves

- walk the tree when drawing

e very convenient representation for objects
- all objects can be defined in their simplest form

- e.g. every sphere can be represented by a
transformation applied to the unit sphere

Computer Graphics = Transforms © 2005 Fabio Pellacini « 51

Transformation Hierarchies

[sphlere } [trialngle} [translform} [sphlere }
I

[trialngle} [sphere }

Computer Graphics = Transforms © 2005 Fabio Pellacini « 52

Implementing Transformation Hierarchies

Raytracing and Transformations

e transformation function for each node

- get the parent function

- apply the transform

- pass the combined transform when calling children
e stack of transforms

- push/pop when walking down/up

- used by graphics libraries (OpenGL)

- more flexible

- generalized mechanism for all attributes

Computer Graphics = Transforms © 2005 Fabio Pellacini « 53

e transform the object
- simple for triangles
= since they transforms to triangles
- but most objects require complex intersection tests
= spheres do not transforms to spheres, but ellipsoids
e transform the ray
- much more elegant
- works on any surface
- allow for much simpler intersection tests
= only worry about unit sphere, all others are transformed

Computer Graphics = Transforms © 2005 Fabio Pellacini « 54

Raytracing and Transformations

e transforming rays
- transform origin/direction as point/vector
- note that direction is not normalized now
e i.e. ray parameter is not the distance

e intersect a transformed object
- transform the ray by matrix inverse
- intersect surface
- transform hit point and normal by matrix

Computer Graphics = Transforms © 2005 Fabio Pellacini « 55

