Geometric Transfo	rmations	 Linear Algebra Review Matrices notation basic operations matrix-vector multiplication 	
Computer Graphics • Transforms	© 2005 Fabio Pellacini • 1	Computer Graphics • Transforms	© 2005 Fabio Pellacini • 2
Matrices		Matrix Operations	

- Notation for matrices and vectors
 - use column form for vectors

$$M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} m_{ij} \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$$

Matrix Operations

Addition

$$T = M + N \Longrightarrow [t_{ij}] = [m_{ij} + n_{ij}]$$

• Scalar Multiply

$$T = \alpha M \Longrightarrow [t_{ij}] = [\alpha m_{ij}]$$

• Transpose

Matrix Operations

- Matrix-Matrix Multiply
 - row-column multiplication
 - not commutative
 - associative

$$T = MN \Longrightarrow [t_{ij}] = \left[\sum_{k} m_{ik} n_{kj}\right]$$
$$\begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix}$$

Matrix Operations

- Matrix-Vector Multiply
 - row-column multiplication

$$\mathbf{u} = M\mathbf{v} \Longrightarrow [u_i] = \left[\sum_k m_{ik} v_k\right]$$

Computer Graphics • Transforms © 2005 Fabio Pellacini • 5 Computer Graphics • Transforms © 2005 Fabio Pellacini • 6 **Special Matrices**

• Identity

$$I = \begin{bmatrix} i_{ij} \end{bmatrix} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases} \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$MI = IM = M$$

- Zero
 - $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $O = \left[o_{ij} \right] = 0$

$$M + O = M$$

Matrix Operations

- Transpose
 - flip along the diagonal

$$T = M^T \Longrightarrow [t_{ij}] = [m_{ji}]$$

Inverse

Computer Graphics • Transforms

- will not compute explicitly in this course

$$T = M^{-1} \Longrightarrow TM = MM^{-1} = M^{-1}M = I$$

Geometric Transformation Matrix Operations Properties · Linearity of multiplication • Function that maps points to points $\alpha(A+B) = \alpha A + \alpha B$ $\mathbf{p} \rightarrow \mathbf{p'} = X(\mathbf{p})$ M(A+B) = MA + MB• Different transformations have restriction on the Associativity of multiplication form of M A(BC) = (AB)C- we will look at linear, affine and projections • Transpose and Inverse of Matrix Multiply $(AB)^T = B^T A^T$ $(AB)^{-1} = B^{-1}A^{-1}$ Computer Graphics • Transforms © 2005 Fabio Pellacini • 9 Computer Graphics • Transforms © 2005 Fabio Pellacini • 10 Translation • Simplest form $T_t(\mathbf{p}) = \mathbf{p} + \mathbf{t}$ $T_{\mathbf{t}}^{-1}(\mathbf{p}) = T_{-\mathbf{t}}(\mathbf{p}) = \mathbf{p} - \mathbf{t}$ • Inverse 2D Transformations

Linear Transformation

- fundamental property $X(\alpha \mathbf{p} + \beta \mathbf{q}) = \alpha X(\mathbf{p}) + \beta X(\mathbf{q})$
- can be represented in matrix form
 X(p) = Mp
- other properties
 - maps origin to origin
 - maps lines to lines
 - parallel lines remain parallel
 - length ratios are preserved
 - closed under composition

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 13

Uniform Scale

Non-uniform Scale

Rotation

$$R_{\theta}\mathbf{p} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} p_x \cos\theta - p_y \sin\theta \\ p_x \sin\theta + p_y \cos\theta \end{bmatrix}$$
$$R_{\theta}^{-1} = R_{-\theta}$$

Shear

Combining translation and linear transforms

- represent linear together with translation
 - rigid body transformation are a subset of this

$$X_{M,\mathbf{t}}(\mathbf{p}) = M\mathbf{p} + \mathbf{t}$$

• goal: unified format for all transformations

Reflection

Homogeneous coordinates

represent points with 1 additional coordinate w
set it to 1 for points

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_w \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Homogeneous coordinates

• represent translation with a 3x3 matrix

$$T_{\mathbf{t}}\mathbf{p} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{x} + t_{x} \\ p_{y} + t_{y} \\ 1 \end{bmatrix}$$

• add one row and column to linear transforms

$$M\mathbf{p} = \begin{bmatrix} m_{11} & m_{12} & 0 \\ m_{21} & m_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11}p_x + m_{12}p_y \\ m_{21}p_x + m_{22}p_y \\ 1 \end{bmatrix}$$

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 21

Affine Transformations

• combining linear and translation in one matrix

$$T\mathbf{p} = M\mathbf{p} + \mathbf{t} = \begin{bmatrix} M & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$

- properties
 - does not map origin to origin
 - maps lines to lines
 - parallel lines remain parallel
 - length ratios are preserved
 - closed under composition

```
Computer Graphics • Transforms
```

© 2005 Fabio Pellacini • 22

Affine Transformations

translation $T_t = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$ scale $S_s = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$ rotation $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Compositing transformations

- applying one transformation after another
 - expressed by function composition

$$\mathbf{p}' = X_2(X_1(\mathbf{p})) = (X_2 \circ X_1)(\mathbf{p})$$

• for the transforms presented before, computed by matrix multiplication

 $(X_2 \circ X_1)(\mathbf{p}) = X_2(X_1(\mathbf{p})) = M_2(M_1\mathbf{p}) = (M_2M_1)(\mathbf{p})$

Compositing transformations

• translation

$$\begin{bmatrix} 0 & \mathbf{t}_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \mathbf{t}_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \mathbf{t}_1 + \mathbf{t}_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$

• linear transformations

$$\begin{bmatrix} \boldsymbol{M}_2 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{M}_2 \boldsymbol{M}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{1} \end{bmatrix}$$

• affine transformations

$$\begin{bmatrix} M_2 & \mathbf{t}_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_1 & \mathbf{t}_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M_2 M_1 & M_2 \mathbf{t}_1 + \mathbf{t}_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$

Computer Graphics • Transforms

```
© 2005 Fabio Pellacini • 25
```

Compositing Transformations

• composition is not commutative

Compositing Transformations

• composition is not commutative

rotate, then translate

translate, then rotate

Compositing Transformations

• composition is not commutative

rotate, then translate

translate, then rotate

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 27

Complex Transformation

- often represented as combination of simpler ones
 - intuitive geometric interpretation
- rotation around arbitrary axis
 - translate to axis center
 - rotate
 - translate back

$$R_{\mathbf{a},\theta} = T_{-\mathbf{a}}R_{\theta}T_{\mathbf{a}}$$

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 29

Rotation around arbitrary axis

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 30

Rotation around arbitrary axis

Coordinate Systems Review

points are represented wrt a coordinate system
 cartesian coordinates in the canonical coord. system

 $\mathbf{p} = (p_x, p_y) \Leftrightarrow \mathbf{p} = \mathbf{o} + p_x \mathbf{x} + p_y \mathbf{y} = \mathbf{o} + (\mathbf{x} \cdot \mathbf{p})\mathbf{x} + (\mathbf{y} \cdot \mathbf{p})\mathbf{y}$

• canonical coordinate system

o = (0,0) **x** = (1,0) **y** = (0,1)

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 37

Coordinate System Review

• write a point in a new coordinate system

$$\mathbf{p}' = (p'_x, p'_y) \Leftrightarrow \mathbf{p} = \mathbf{o}' + (\mathbf{x}' \cdot \mathbf{p})\mathbf{x}' + (\mathbf{y}' \cdot \mathbf{p})\mathbf{y}' = \mathbf{o}' + p'_x \mathbf{x}' + p'_y \mathbf{y}'$$

• can be represented as an affine matrix multiply

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = M \begin{bmatrix} p'_x \\ p'_y \\ 1 \end{bmatrix} = \begin{bmatrix} x'_x & y'_x & o'_x \\ x'_y & y'_y & o'_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p'_x \\ p'_y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = M \begin{bmatrix} \mathbf{p}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}' & \mathbf{y}' & \mathbf{o}' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}' \\ 1 \end{bmatrix}$$

3D Transformations

Computer Graphics • Transforms

© 2005 Fabio Pellacini • 38

Coordinate System Review

- an affine transform is a change of coord. system
 - another interpretation for combination of transforms
- what is the matrix I should use to change coord?
 - just invert previous definition
 - i.e. invert combination of translation and orthonormal

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = M \begin{bmatrix} \mathbf{p}' \\ 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} \mathbf{p}' \\ 1 \end{bmatrix} = M^{-1} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$
$$M^{-1} = \begin{bmatrix} x'_x & x'_y & -o'_x \\ y'_x & y'_y & -o'_y \\ 0 & 0 & 1 \end{bmatrix}$$

2D to 3D transformations

- adopt homogeneous formulation in 3d
 - points have 4 coordinates
 - use 4x4 matrices for transformations
- most concept generalize very easily
 - rotation much more complex

Affine Transformations

Affine Transformations

rotation around z

Computer Graphics • Transforms

$$R_{\theta}^{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

© 2005 Fabio Pellacini • 41

Rotation around arbitrary axis

 define new coordinate system with z' parallel to axis and origin on the axis build transform matrix as seen previously F⁻¹ = \begin{bmatrix} x' & y' & z' & o' \\ 0 & 0 & 0 & 1 \end{bmatrix} 	
Computer Graphics • Transforms © 2005 Fabio Pellacini • 46	
 Transforming normals points and vectors works tangents, i.e. differences of points, works too normals works differently defined as orthogonal to the transformed surface i.e. orthogonal to all tangents 	

Computer Graphics • Transforms

Rotation around arbitrary axis

Transforming normals	Transformation Hierarchies
 by definition $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ after transform $(M\mathbf{t})^T (X\mathbf{n}) = 0$ for all t, we have $\mathbf{t}^T M^T X \mathbf{n} = 0$ which gives $\mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = 0$ normals are transformed by the inverse transpose 	 often need to transform an object wrt another e.g. the computer on the table when the table moves, the computer moves naturally build a hierarchy of transformation to transform the table, apply its transform to transform the computer, apply the table and the computer transform
Computer Graphics • Transforms © 2005 Fabio Pellacini • 49	Computer Graphics • Transforms © 2005 Fabio Pellacini • 50
Transformation Hierarchies	Transformation Hierarchies
 represented as a tree data structure transformation nodes object nodes - leaves walk the tree when drawing very convenient representation for objects all objects can be defined in their simplest form e.g. every sphere can be represented by a transformation applied to the unit sphere 	root transform sphere triangle transform sphere triangle sphere

Implementing Transformation Hierarchies

Raytracing and Transformations transformation function for each node transform the object - get the parent function - simple for triangles since they transforms to triangles - apply the transform - but most objects require complex intersection tests - pass the combined transform when calling children • spheres do not transforms to spheres, but ellipsoids stack of transforms • transform the ray - push/pop when walking down/up - much more elegant - used by graphics libraries (OpenGL) - works on any surface - more flexible - allow for much simpler intersection tests - generalized mechanism for all attributes • only worry about unit sphere, all others are transformed © 2005 Fabio Pellacini • 54 Computer Graphics • Transforms © 2005 Fabio Pellacini • 53 Computer Graphics • Transforms **Raytracing and Transformations** transforming rays - transform origin/direction as point/vector - note that direction is not normalized now • i.e. ray parameter is not the distance intersect a transformed object - transform the ray by matrix inverse - intersect surface - transform hit point and normal by matrix