
Computer Graphics • Transforms © 2005 Fabio Pellacini • 1

Geometric Transformations

Computer Graphics • Transforms © 2005 Fabio Pellacini • 2

Linear Algebra Review

• Matrices
– notation
– basic operations
– matrix-vector multiplication

Computer Graphics • Transforms © 2005 Fabio Pellacini • 3

Matrices

• Notation for matrices and vectors
– use column form for vectors

[]ijm
mm
mm

M =⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211 []Tvv
v
v

21
2

1 =⎥
⎦

⎤
⎢
⎣

⎡
=v

Computer Graphics • Transforms © 2005 Fabio Pellacini • 4

Matrix Operations

• Addition

• Scalar Multiply

• Transpose

][][ijijij nmtNMT +=⇒+=

][][ijij mtMT αα =⇒=

Computer Graphics • Transforms © 2005 Fabio Pellacini • 5

Matrix Operations

• Matrix-Matrix Multiply
– row-column multiplication
– not commutative
– associative

⎥⎦
⎤

⎢⎣
⎡=⇒= ∑

k
kjikij nmtMNT][

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2221

1211

2221

1211

2221

1211

nn
nn

mm
mm

tt
tt

Computer Graphics • Transforms © 2005 Fabio Pellacini • 6

Matrix Operations

• Matrix-Vector Multiply
– row-column multiplication

⎥⎦
⎤

⎢⎣
⎡=⇒= ∑

k
kiki vmuM][vu

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2221

1211

2

1

v
v

mm
mm

u
u

Computer Graphics • Transforms © 2005 Fabio Pellacini • 7

Special Matrices

• Identity

• Zero

[]
⎩
⎨
⎧

≠
=

==
j ifor 0
jifor1

ijiI ⎥⎦

⎤
⎢⎣

⎡
=

10
01

I

MIMMI ==

[] 0== ijoO ⎥⎦

⎤
⎢⎣

⎡
=

00
00

O

MOM =+

Computer Graphics • Transforms © 2005 Fabio Pellacini • 8

Matrix Operations

• Transpose
– flip along the diagonal

• Inverse
– will not compute explicitly in this course

][][jiij
T mtMT =⇒=

IMMMMTMMT ===⇒= −−− 111

Computer Graphics • Transforms © 2005 Fabio Pellacini • 9

Matrix Operations Properties

• Linearity of multiplication

• Associativity of multiplication

• Transpose and Inverse of Matrix Multiply

MBMABAM
BABA

+=+
+=+

)(
)(ααα

111)(
)(

−−− =

=

ABAB
ABAB TTT

CABBCA)()(=

Computer Graphics • Transforms © 2005 Fabio Pellacini • 10

Geometric Transformation

• Function that maps points to points

• Different transformations have restriction on the
form of M
– we will look at linear, affine and projections

)(' ppp X=→

Computer Graphics • Transforms © 2005 Fabio Pellacini • 11

2D Transformations

Computer Graphics • Transforms © 2005 Fabio Pellacini • 12

Translation

• Simplest form
• Inverse

tppt +=)(T
tppp tt −== −

−)()(1 TT

Computer Graphics • Transforms © 2005 Fabio Pellacini • 13

Linear Transformation

• fundamental property

• can be represented in matrix form

• other properties
– maps origin to origin
– maps lines to lines
– parallel lines remain parallel
– length ratios are preserved
– closed under composition

)()()(qpqp XXX βαβα +=+

pp MX =)(

Computer Graphics • Transforms © 2005 Fabio Pellacini • 14

Uniform Scale

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
=

y

x

y

x
s sp

sp
p
p

s
s

S
0

0
p

ss SS /1
1 =−

Computer Graphics • Transforms © 2005 Fabio Pellacini • 15

Non-uniform Scale

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

yy

xx

y

x

y

x

ps
ps

p
p

s
s

S
0

0
ps

)/1,/1(
1

yx ssSS =−
s

Computer Graphics • Transforms © 2005 Fabio Pellacini • 16

Rotation

⎥
⎦

⎤
⎢
⎣

⎡
+
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ −
=

θθ
θθ

θθ
θθ

θ cossin
sincos

cossin
sincos

yx

yx

y

x

pp
pp

p
p

R p

θθ −
− = RR 1

Computer Graphics • Transforms © 2005 Fabio Pellacini • 17

Shear

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

yxy

yxx

y

x

y

x

pps
psp

p
p

s
s

Sh
1

1
ps

Computer Graphics • Transforms © 2005 Fabio Pellacini • 18

Reflection

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡−
=

y

x

y

x
x p

p
p
p

Rl
10
01

p

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
−

−
=

y

x

y

x
o p

p
p
p

Rl
10

01
p

...=pyRl

Computer Graphics • Transforms © 2005 Fabio Pellacini • 19

Combining translation and linear transforms

• represent linear together with translation
– rigid body transformation are a subset of this

• goal: unified format for all transformations

tppt += MX M)(,

Computer Graphics • Transforms © 2005 Fabio Pellacini • 20

Homogeneous coordinates

• represent points with 1 additional coordinate w
– set it to 1 for points

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
y

x

w

y

x

p
p

p
p
p

p

Computer Graphics • Transforms © 2005 Fabio Pellacini • 21

Homogeneous coordinates

• represent translation with a 3x3 matrix

• add one row and column to linear transforms

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

11100
10
01

yy

xx

y

x

y

x

tp
tp

p
p

t
t

T pt

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

11100
0
0

2221

1211

2221

1211

yx

yx

y

x

pmpm
pmpm

p
p

mm
mm

Mp

Computer Graphics • Transforms © 2005 Fabio Pellacini • 22

Affine Transformations

• combining linear and translation in one matrix

• properties
– does not map origin to origin
– maps lines to lines
– parallel lines remain parallel
– length ratios are preserved
– closed under composition

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
=+=

110
pt

tpp
M

MT

Computer Graphics • Transforms © 2005 Fabio Pellacini • 23

Affine Transformations

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
10
01

y

x

t
t

Tt

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
00
00

y

x

s
s

Ss

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

θθ
θθ

θR

translation

scale

rotation

Computer Graphics • Transforms © 2005 Fabio Pellacini • 24

Compositing transformations

• applying one transformation after another
– expressed by function composition

• for the transforms presented before,
computed by matrix multiplication

))(())((' 1212 ppp XXXX o==

))(()())(())((12121212 pppp MMMMXXXX ===o

Computer Graphics • Transforms © 2005 Fabio Pellacini • 25

Compositing transformations

• translation

• linear transformations

• affine transformations

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ +
=⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
110

0
110

0
10

0 2112 pttptt

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
110

0
110

0
10
0 1212 pp MMMM

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡ +
=⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
11011010

212121122 pttptt MMMMM

Computer Graphics • Transforms © 2005 Fabio Pellacini • 26

Compositing Transformations

• composition is not commutative

rotate,
then translate

translate,
then rotate

Computer Graphics • Transforms © 2005 Fabio Pellacini • 27

Compositing Transformations

• composition is not commutative

rotate,
then translate

translate,
then rotate

Computer Graphics • Transforms © 2005 Fabio Pellacini • 28

Compositing Transformations

• composition is not commutative

rotate,
then translate

translate,
then rotate

Computer Graphics • Transforms © 2005 Fabio Pellacini • 29

Complex Transformation

• often represented as combination of simpler ones
– intuitive geometric interpretation

• rotation around arbitrary axis
– translate to axis center
– rotate
– translate back

aaa TRTR θθ −=,

Computer Graphics • Transforms © 2005 Fabio Pellacini • 30

Rotation around arbitrary axis

Computer Graphics • Transforms © 2005 Fabio Pellacini • 31

Rotation around arbitrary axis

Computer Graphics • Transforms © 2005 Fabio Pellacini • 32

Rotation around arbitrary axis

Computer Graphics • Transforms © 2005 Fabio Pellacini • 33

Rotation around arbitrary axis

Computer Graphics • Transforms © 2005 Fabio Pellacini • 34

Transforming points and vectors

• points and vectors are different entities
– vectors: encode direction (difference of points)
– points: encode position (origin plus a vector)

• points and vector transform differently
– we have shown how points transforms previously
– vectors simply ignore the translation

)()()()(
)(

qptqtpv
tpp

qpv

−=+−+=
+=

−=

MMMX
MX

Computer Graphics • Transforms © 2005 Fabio Pellacini • 35

Transforming points and vectors

• use homogeneous coordinates with w=0

• everything is consistent!

• but what is that “w” anyway?

⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
0010
vvt MM

Computer Graphics • Transforms © 2005 Fabio Pellacini • 36

Homogeneous Coordinates

• points
– will become useful later on

• vectors

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≡

w
wp
wp

p
p

pp y

x

y

x

yx

1
),(

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≡

0
),(y

x

yx v
v

vv

Computer Graphics • Transforms © 2005 Fabio Pellacini • 37

Coordinate Systems Review

• points are represented wrt a coordinate system
– cartesian coordinates in the canonical coord. system

• canonical coordinate system

ypyxpxoyxopp)()(),(⋅+⋅+=++=⇔= yxyx pppp

)1,0(
)0,1(
)0,0(

=
=
=

y
x
o

Computer Graphics • Transforms © 2005 Fabio Pellacini • 38

Coordinate System Review

• write a point in a new coordinate system

• can be represented as an affine matrix multiply

'''''')'(')'(')','(' yxoypyxpxopp yxyx pppp ++=⋅+⋅+=⇔=

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
'

100
'''

1
'

1

1
'
'

100
'''
'''

1
'
'

1
poyxpp

M

p
p

oyx
oyx

p
p

Mp
p

y

x

yyy

xxx

y

x

y

x

Computer Graphics • Transforms © 2005 Fabio Pellacini • 39

Coordinate System Review

• an affine transform is a change of coord. system
– another interpretation for combination of transforms

• what is the matrix I should use to change coord?
– just invert previous definition

• i.e. invert combination of translation and orthonormal

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=

⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡
⇒⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡

−

−

100
'''
'''

11
'

1
'

1

1

1

yyx

xyx

oyy
oxx

M

MM
pppp

Computer Graphics • Transforms © 2005 Fabio Pellacini • 40

3D Transformations

Computer Graphics • Transforms © 2005 Fabio Pellacini • 41

2D to 3D transformations

• adopt homogeneous formulation in 3d
– points have 4 coordinates
– use 4x4 matrices for transformations

• most concept generalize very easily
– rotation much more complex

Computer Graphics • Transforms © 2005 Fabio Pellacini • 42

Affine Transformations

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
100
010
001

z

y

x

t
t
t

Tttranslation

scale

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

z

y

x

s
s

s

Ss

Computer Graphics • Transforms © 2005 Fabio Pellacini • 43

Affine Transformations

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00cossin
00sincos

θθ
θθ

θ
zRrotation around z

Computer Graphics • Transforms © 2005 Fabio Pellacini • 44

Affine Transformations

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
0cos0sin
0010
0sin0cos

θθ

θθ

θ
yR

rotation around x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0cossin0
0sincos0
0001

θθ
θθ

θ
xR

rotation around y

Computer Graphics • Transforms © 2005 Fabio Pellacini • 45

Rotation around arbitrary axis

• in 2d, rotation are around a point
– change coordinate frame (translation)
– rotate around the origin
– change coordinate frame back
– simple geometric construction

• in 3d, they are around an axis
– change coordinate frame (align z with axis)
– rotate around z axis
– change coordinate frame back
– complex geometric construction

aaa TRTR θθ −=,

aaa FRFR θθ
1

,
−=

Computer Graphics • Transforms © 2005 Fabio Pellacini • 46

Rotation around arbitrary axis

• use a change of coordinate system
– define new coordinate system with z’ parallel to axis

and origin on the axis

• build transform matrix as seen previously

⎥⎦

⎤
⎢⎣

⎡
=−

1000
''''1 ozyx

F

Computer Graphics • Transforms © 2005 Fabio Pellacini • 47

Construct 3d frame from vectors

• given two non-parallel vectors a and b
– i.e. a plane
– set x, y parallel to a, b
– x = a / |a|

z = x × b; z = z / |z|
y = z × x

• given the vector a
– set z parallel to a, choose arbitrary x, y
– continue as above

Computer Graphics • Transforms © 2005 Fabio Pellacini • 48

Transforming normals

• points and vectors works
• tangents, i.e. differences of points, works too
• normals works differently

– defined as orthogonal to the transformed surface
– i.e. orthogonal to all tangents

Computer Graphics • Transforms © 2005 Fabio Pellacini • 49

Transforming normals

• by definition
• after transform
• for all t, we have
• which gives

• normals are transformed by the inverse transpose

0==⋅ ntnt T

0)()(=nt XM T

0=nt XM TT

0)(1 =− nt TTT MM

Computer Graphics • Transforms © 2005 Fabio Pellacini • 50

Transformation Hierarchies

• often need to transform an object wrt another
– e.g. the computer on the table
– when the table moves, the computer moves

• naturally build a hierarchy of transformation
– to transform the table, apply its transform
– to transform the computer, apply the table and the

computer transform

Computer Graphics • Transforms © 2005 Fabio Pellacini • 51

Transformation Hierarchies

• represented as a tree data structure
– transformation nodes
– object nodes - leaves

• walk the tree when drawing
• very convenient representation for objects

– all objects can be defined in their simplest form
– e.g. every sphere can be represented by a

transformation applied to the unit sphere

Computer Graphics • Transforms © 2005 Fabio Pellacini • 52

Transformation Hierarchies

root

transform transform

sphere triangle transform sphere

triangle sphere

Computer Graphics • Transforms © 2005 Fabio Pellacini • 53

Implementing Transformation Hierarchies

• transformation function for each node
– get the parent function
– apply the transform
– pass the combined transform when calling children

• stack of transforms
– push/pop when walking down/up
– used by graphics libraries (OpenGL)
– more flexible
– generalized mechanism for all attributes

Computer Graphics • Transforms © 2005 Fabio Pellacini • 54

Raytracing and Transformations

• transform the object
– simple for triangles

• since they transforms to triangles

– but most objects require complex intersection tests
• spheres do not transforms to spheres, but ellipsoids

• transform the ray
– much more elegant
– works on any surface
– allow for much simpler intersection tests

• only worry about unit sphere, all others are transformed

Computer Graphics • Transforms © 2005 Fabio Pellacini • 55

Raytracing and Transformations

• transforming rays
– transform origin/direction as point/vector
– note that direction is not normalized now

• i.e. ray parameter is not the distance

• intersect a transformed object
– transform the ray by matrix inverse
– intersect surface
– transform hit point and normal by matrix

