
SceneGit: A Practical System for Di�ing and Merging 3D Environments

EDOARDO CARRA,Sapienza University of Rome
FABIO PELLACINI,Sapienza University of Rome

Ancestor Versions Merged

delete/change from 1 delete/change from 2 add/change from 2add/change from 1 con! ictconcurrent change

Fig. 1. Two scene versions (middle top and middle bo�om) are created concurrently by editing a common ancestor (top le�). Our system detects changes
between each version and the ancestor, then merges the changes automatically (top right). We highlight added and changed elements on the merged scene
(bo�om right), and deleted and changed elements on the ancestor (bo�om le�). The color of the edits, shown in the legend below the figure, indicates their
provenance: green/yellow for version one, blue/red for version two, cyan/orange if the same element was edited in both versions, purple for conflicts.

Version control systems are the foundation of collaborative work�ows for
text documents. For 3D environments though, version control is still an
open problem due to the heterogeneous data of 3D scenes and their size.
In this paper, we present a practical version control system for 3D scenes
comprised of shapes, materials, textures, and animations, combined together
in scene graphs. We version objects at their �nest granularity, to make
repositories smaller and to allow artists to work concurrently on the same
object. Since, for some scene data, computing an optimal set of changes
between versions is not computationally feasible, version control systems
use heuristics. Compared to prior work, we propose heuristics that are
e�cient, robust, and independent of the application. We test our system
on a variety of large scenes edited with di�erent work�ows, and show that
our approach can handle all cases well while remaining e�cient as scene
size increases. Compared to prior work, we are signi�cantly faster and more
robust. A user study con�rms that our system aids collaboration.

ACM Reference format:
Edoardo Carra and Fabio Pellacini. 2019.SceneGit: A Practical System for
Di�ng and Merging 3D Environments.ACM Trans. Graph.38, 6, Article 1
(November 2019), 15 pages.
https://doi.org/10.1145/3355089.3356550

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART1 $15.00
https://doi.org/10.1145/3355089.3356550

1 INTRODUCTION
Distributed version control [Chacon 2009; O'Sullivan 2009] and col-
laborative editors [Clara.io 2014; Google 2016] are the two most
used tools in modern collaborative work�ows. In 3D graphics, ver-
sion control is the most widely adopted in practice since it explicitly
maintains version histories and allows for branching work�ows
between multiple artists. However, it is performed solely by version-
ing each asset as a whole, which means that no concurrent edits can
be made by multiple users on the same asset. Recently, collaborative
editors have been proposed that use version control as the under-
lying implementation mechanism [Calabrese et al. 2016; Onshape
2014; Salvati et al. 2015; Santoni et al. 2018]. To this day though,
version control for 3D environments is still an open problem. While
many systems have been proposed [Denning and Pellacini 2013;
Dobo² et al. 2018, 2014, 2013; Dobo² and Steed 2012a,b], there is still
no comprehensive solution that supports all scene data versioned
at its �nest granularity.

In this paper, we discuss a practical solution for versioning 3D
environments. We consider versioning of shapes, materials, anima-
tions and scene layouts in a comprehensive framework. For each of
these di�erent entities, we support versioning at their �nest granu-
larity, e.g., individual vertices and faces for shapes, keyframes for
animations, texels for textures and single properties for generic
scene objects. By using a �ne granularity, we ensure that edits are
captured precisely, so that they can be e�ciently stored, correctly
merged and informatively displayed.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:2 ˆ Edoardo Carra and Fabio Pellacini

Version control systems are often built in layers from the most
basic operations, all the way to the command-line and graphical
interfaces shown to users. In this paper, we focus on the lowest
level operations needed to build a version control system. To de�ne
them, let us introduce some simpli�ed nomenclature that we will
use throughout the paper. We callancestora scene that will be edited
and aversiona scene edited starting from the ancestor. Achange
is the unordered collections of modi�cations that we apply to the
ancestor to obtain the version.

We investigate four di�erent operations. The most basic oper-
ation is di�ng an ancestor and a version to compute the change
between them. The inverse operation ispatchingan ancestor with
a change to reconstruct the edited version. Patching is used quite
often for example when changes are sent over a network and recon-
structed locally. For collaboration, we supportmergingtwo versions
created independently using a three-way merge operation where
the changes of both versions with respect to a common ancestor are
merged together into a scene that combines both edits. We consider
only three-way merging since it has better reliability compared to
two-way merging [Chacon 2009]. Finally, we support e�cientencod-
ing and decodingof changes for storage or transmission. Fig. 1 shows
a three-way merge between two edited scenes and their common
ancestor, with changes highlighted.

Distributed version control systems are designed to handle large
collections of small text documents where each document is di�ed
and merged independently. Di�ng and merging 3D environments
has signi�cant challenges compared to text. Scenes are made of
heterogeneous data, e.g., shapes, textures, animations, scene layouts.
Furthermore, scenes elements have relationships between them that
need to be maintained during di�ng and merging, e.g., relationships
between vertices and faces in meshes, transforms and keyframe
times in animations, references to nodes in scene trees. Finally, 3D
scenes are large, both in terms of �le size and number of elements,
compared to standard text documents.

In our system, we handle all these concerns guided by four main
insights. First, 3D scenes need to be versioned as wholes rather
than as single components to maintain relationships. Second, dur-
ing di�ng, we assign unique identi�ers to all scenes elements at
the �nest possible granularity, e.g., objects, vertices, faces, texels,
keyframes have unique identi�ers computed by our systems. These
identi�ers are unique in the scene and across versions so that they
can be tracked by the version control system. This allows us to easily
implement patching and merging, robustly detect con�icting edits,
store changes concisely in a sparse representation, view changes
informatively and handle heterogeneous data with ease. To assign
the identi�ers, we observe that while scene data is heterogeneous,
it can be categorizes into four domains roughly corresponding to
shapes, textures, animations and scene nodes. For each of these,
we provide algorithms to assign identi�ers that are either correct,
for the simple cases, or practical heuristics, for the cases where
assigning identi�ers can be shown to be NP-hard. These insights
lead to a practical, easy-to-implement, version control system that
is e�cient and general. In our view, these insights and the design
trade-o�s that lead to them, are the main technical contribution of
our work and sets this solution aside from all prior e�orts in this
area.

We tested our system by di�ng and merging a variety of scenes
stored in two di�erent �le formats, Wavefront OBJ [WavefrontTech-
nologies 1980] and Khronos glTF [KhronosGroup 2016]. This shows
that our system is generic with respect to the scene format itself.
The tested scenes di�er substantially in the type, size and number of
objects. We perform a variety of edits to shapes, materials, textures,
animations and scene nodes. For each of these edits we used di�er-
ent tools and editing techniques, including addition and deletion
of elements, parameter adjustments, painting, sculpting, low-poly
modeling, scene layout and instancing. In all these edits, we found
our system to be e�cient, capable of correctly merging all edits or
determining con�icts precisely.

We further validate our system by comparing to prior work as
well as commercial products. In both cases, we are signi�cantly
more e�cient and robust. In fact, this comparison shows that our
system is the only one that can reliably support concurrent edits to
large scenes. We further validate our work by running a user study
where we ask users to rate how well our system highlights the edits,
how reliably it merges versions, and how helpful it is in supporting
collaboration. All subjects rated our system high in all questions.

In conclusion, we present a comprehensive solution for versioning
3D environments that improves upon the state of the art with the
following technical contributions:

(1) we present, motivate and analyze an overall design for version
control systems for 3D scenes; to the best of knowledge this is
the �rst work that presents such comprehensive discussion;

(2) we introduce a sparse scene representation that tracks scene
elements uniquely and at their �nest granularity across all
versions in a repository;

(3) based on this data structure, we introduce a de�nition of the
merge operation that is formally well-de�ned, leading to a
robust merge algorithm;

(4) we extract a sparse representation e�ciently from edited
scenes by deriving di� algorithms that adapt to the heteroge-
nous data in 3D scenes;

(5) compared to prior work, we are signi�cantly faster, scale
better and remains robust for large edits;

(6) with a user study, we validate that our system is helpful in
supporting collaboration.

2 RELATED WORK
Authoring 3D environments requires considerable e�ort for all but
the simplest cases. For this reason, many artists work on the same
scene. A common practice in industry is to split scenes into a large
collection of small �les so that each �le can be edited independently.
Version control is then used to track individual �les, but two artists
cannot work on the same �le at once, since merging is not reliable
in most cases. This motivates recent work in version control for 3D
environments.

Versioning Whole Scenes . While text version control is well
established, whole-scene version control is still an open problem.
[Dobo² et al. 2013; Dobo² and Steed 2012a,b] presents e�cient ver-
sion control systems that handle scenes composed of assets that are
individually versioned. A limitation of these works is that assets are
versioned atomically, so two artists cannot work concurrently on
the same asset. [Dobo² et al. 2018] extend these approaches with a

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:3

real-time viewer of scene di�erences. A concern with this approach
is that it cannot detect changes that are not viewed directly, which
becomes problematic as the scale of the model increases. We take a
di�erent approach and version all scene data at its �nest granularity
to allow for all collaborative work�ows. This is the tradeo� that we
make since we gain precision when di�ng and merging, but result
in slower execution times.

Computational Complexity . The main concern in designing a
version control system for 3D scenes is that for some scene elements
an optimal solution cannot be computed in practice. [Denning and
Pellacini 2013] prove formally that di�ng 3D meshes is equivalent
to computing the graph edit distance of an appropriately-labeled
graph [Gao et al. 2010; Neuhaus and Bunke 2007]. In turn, the graph
edit distance can be reduced to the maximum common subgraph
isomorphism problem [Bunke 1997], which is an NP-hard problem.
Said another way, it is not feasible to compute the minimum edit
that transforms a mesh into another.

[Denning and Pellacini 2013] suggest an heuristic that approxi-
mates the di� better than previously published works, e.g., [Cour
et al. 2007; Riesen and Bunke 2009]. For the larger meshes in this
paper though, this heuristic would take hours to compute, while
still producing sub-optimal matchings in many cases [Salvati et al.
2015]. In our work, we include a subset of previous heuristics, for
a di�erent tradeo� that favors speed over accuracy. A di�erent ap-
proach would be to adopt a shape correspondence algorithm � see
[Chang et al. 2011; Kaick et al. 2011; Ovsjanikov et al. 2017] for a
review. In [Denning and Pellacini 2013], the authors already show
that their heuristic compares favorably to a variety of shape corre-
spondence [Chang and Zwicker 2008; Eppstein et al. 2008; Kim et al.
2011; Sharma et al. 2011], motivated by the fact that mesh di�ng
and shape correspondence are fundamentally di�erent problems.
We refer the reader to the original paper for further discussion.

The same computational complexity is required for the case of
scene nodes organized in a scene graph. As we already discussed,
the graph edit distance is NP-hard. Even if we constrain the problem
to di�ng labeled trees, that could be used to model a transform
hierarchy, the tree edit distance is NP-hard [Zhang 1989]. Again,
although approximate algorithms exist [Zhang and Shasha 1989],
they either do not scale or produce results that are too imprecise
[Wang et al. 2003]. In this case, we take the practical assumption
of relying on authored names when available, and detect renaming
operations, which is similar to the heuristic taken by Git on the �le
system.

Animation data is represented as an ordered sequence of keyframes.
This representation lets us model the matching between anima-
tion keyframes as a problem of computing the string edit distance
[Levenshtein 1966]. Even in this case, detecting keyframe moving
operations would become NP-hard, so we assume keyframes are
never switched during editing.

Application of Version Control . As distributed version control
becomes the norm, new applications are begin developed on top
of these toolsets. One class of these applications are collaborative
editors based on version control work�ows. [Calabrese et al. 2016;
Onshape 2014; Salvati et al. 2015] propose collaborative editors for
shape modeling, respectively supporting NURBS, low-polygonal

models and 3D sculpting. [Santoni et al. 2018] allows artists to con-
currently edit the scene layout and behavior scripts that form game
levels in the Unity game engine, although it does not allow artists
to edit assets such as meshes or textures. These editors demonstrate
that new innovative work�ows can be easily constructed once a
version control system is in place. These systems work by having
the user interface express edits directly as di�s that are specialized
only for their application domain. This means that the editors had
to be written speci�cally to support version control, cannot interop-
erate with other tools and have very limited scope in term of what
elements they can edit. We take an entirely di�erent approach and
instead perform �ne-grained version control directly on the scenes
�les without requiring the application to be rewritten to enable
version control. In a way, prior work behaves more like GoogleDocs,
while we work like Git. At the same time, we believe that our sys-
tem can be used as the foundation to write a robust and generic
collaborative editor.

Another work�ow possible is to use version control to capture
asset variations by recording editing operations directly. These op-
erations are organized in a dependency graph that can be used to
re-edit the assets. [Chen et al. 2011] does so for images, while [Chiri-
gati et al. 2013] propose this for 3D modeling. In our work, we do
not version editing operations but their results, namely the scene
data. For this reason, we cannot re-edit scenes as shown in these
works, but we support more general editing and interoperability
between editors.

Version histories can also be used to generate tutorials or visual-
ization of work�ows. [Grossman et al. 2010] shows this for generic
editing work�ows, [Grabler et al. 2009; Kong et al. 2012] for image
editing, [Chen et al. 2014] for sculpting views, [Denning et al. 2011]
for low-poly modeling and [Denning et al. 2015] for 3D sculpting.
If enough versions are not available, histories can be reverse engi-
neered, as shown in [Dobo² et al. 2014] for shapes and [Hu et al.
2013] for images. These applications are orthogonal to our work
and could have been developed using our low-level operations.

3 SYSTEM DESIGN
While a version control system for 3D environments has operations
similar to standard version control, it di�ers in a few major manners.
In this section, we discuss these di�erences and motivate our design
choices.

Scene Data. We focus on scenes comprised of large collection
of objects, including cameras, materials, textures, polygon meshes,
environment maps, keyframed animations, and scene nodes. Each
object has a set of properties de�ned on them, e.g., node transforma-
tions or camera settings, and a set of references to other objects, e.g.,
texture references in materials or mesh reference in nodes. Scenes
nodes may be organized into a transformation hierarchy, that is
handled as a reference to a parent object for each node. The set of
objects' reference forms a direct acyclic graph. Meshes, textures and
animations have more complex data stored in them and are handled
as speci�c cases as described later.

File Formats .A concern in graphics is the plethora of �le formats
available to exchange scene information. Each of these formats
has its own strength and weaknesses and typically support only
some scene objects, but not others. The core of our system support

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:4 ˆ Edoardo Carra and Fabio Pellacini

arbitrary scene descriptions independent on the format encoding
them. For practical purposes, we choose to support Wavefront OBJ
[WavefrontTechnologies 1980], for rich geometry and materials,
and Khnoros glTF [KhronosGroup 2016], for full scenes but with a
simpler geometry model. We pick two formats to ensure our ideas
do not depend on a speci�c format. We choose these speci�c formats
since they are used extensively and are non-proprietary, so amenable
to implementation, and since we could �nd large models encoded
in them and editable with common 3D editors. As we will see later,
other �le formats are amenable to integration into our system easily.

Versioning Scene Data Structures . In standard version con-
trol, text �les are di�ed and merged as ordered character sequences,
ignoring the data structures represented by the �le. In the case of
code, this may lead to compilation problems after a merge, since
the version control system is not merging your program abstract
syntax tree, but its serialized textual representation [Ginosar et al.
2013]. This becomes even more problematic for binary �les, that
most version control systems refuse to merge, since merging bi-
nary serializations would undoubtedly corrupt the underlying data
structures.

Since 3D environments are described by relatively complex data
structures, treating scene �les as either character streams or binary
blobs would not work e�ectively. As examples of merging problems,
indexed triangle meshes could become corrupt since vertex refer-
ences are not maintained during a merge [Denning and Pellacini
2013], images saved in compressed lossless formats, e.g., PNG, could
not be merged, and scene graphs would have corrupted referenced
between nodes [Santoni et al. 2018]. For these reasons,we version
the scene data structures themselves, rather than their serialized coun-
terparts.

Versioning Whole Scenes . 3D environments are always seri-
alized using multiple �les, both to keep the �le size manageable
and to ease data exchange between editors. For example, textures
and meshes are often kept as separate �les. The common practice
today is to version each �le separately. This can lead again to hav-
ing corrupt scene data structures. For example, removing a texture
without updating the materials that refer to it would leave dangling
references in the scene graph. For this reason,we version whole
scenes at once.

Change Granularity . Today's practice is to version assets, such
as meshes or textures, as wholes. This means that the granularity
with which concurrent edits can be performed is each asset at once.
Said another way, artists cannot concurrently work on the same
asset. This is a well-known issue in production environments where
access permissions are often use to lock �les to individual users.
Furthermore, repository sizes increase substantially since each ver-
sion must contain the whole asset even if only a few elements have
changed.we version assets at the granularity of their smallest elements,
e.g., vertices and faces for merges, texels for textures, keyframes for
animations, and individual properties for scene objects. This �ne
granularity allows us to capture small di�erences e�ciently and
precisely. We consider the use of multi-scale representations but
decide not to pursue them since they require complex data struc-
tures that are only e�cient for local edits but are not helpful for
all changes, e.g., a loop cut on a mesh is not captured e�ciently in
multi-scale representations but works well in our case.

Change Metrics . When detecting changes, we make no attempt
to introduce a metric over them, but just consider whether a value
has changed or not. The main reason for this is to support arbitrary
properties whose semantic may not be known. This also addresses
the issue that metrics over di�erent properties are hard to combine,
often requiring user-de�ned weights that need to be tweaked for
each example. Finally, this allows us to improve the system speed
considerably.

Change Encoding . The need to handle �ne granularity for each
change required us to introduce our own in-memory representation
for scene changes and its serialization format. In a previous version
of this work, we use glTF to encode changes, taking advantage of
glTF extensions to customize the format to our needs. This has
the bene�t of allowing other tools to access and transport change
information. Compared to our encoding though, it resulted in larger
repository sizes and was harder to extend to other �le formats. The
main reason for it is thata change is a partial scene. Common scene
formats are meant to encode e�ciently full scenes, rather than
partial ones, especially with the granularity that we require.

Scene Format Independence. In our system, all version control
operations work directly on serialized partial scenes. In our current
implementation, OBJ and glTF scenes are encoded in our format as
a change where all objects are added. Version control operations are
then performed on this common representation. Finally, changes
are decoded back into the original formats after a path or merge.
This idea is very similar to how Git uses its own representation for
�les and directories [Chacon 2009]. This has the main advantage
of allowing us to easily support multiple formats. In fact, we could
integrate our change format and related operations directly in Git
to use its version control infrastructure as shown in [Denning and
Pellacini 2013].

Since we version scene data structures using our own represen-
tation, we do not maintain OBJ and glTF �les as close as possible
to the original when patching and merging. This is the natural
choice in today's version control system since their operations are
�le-centric. In our case though, it is advantageous to follow our
approach since if we were to maintain �le formats closely, we would
have larger di�s. As an example, consider inserting or deleting a
vertex in an indexed mesh data structure. If we want to maintain
vertex order in the serialized �le, many face indices would need to
be updated, resulting in a very large change even if only one vertex
was altered. This is turn stems from the fact that a small update
to a data structure may results in a large change in its serialized
representation.

4 SPARSE SCENE DATA STRUCTURE
To implement the policies listed in the previous section, we need a
change representation that can store partial scene data structures,
scales well to high complexity environments and can encode het-
erogenous values. The key insight of our representation is to assign
unique identi�ers to all elements which we want to track in the
version control system, and use hash tables to sparsely store partial
scene elements and their properties. Let us describe in more detail
our data model, illustrated in Fig. 2.

Scene Data. We model a scene as an unordered collection of
objects with a type and a unique identi�er associated with them. We

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:5

Shape dataScene data Texture data Animation data

1|3
1|6

1|81|7

vertex data
1|3: (0,1,0)
1|6: (3,0,1)
1|7: (2,3,2)
1|8: (4,2,5)

face data
1|10: (1|3,1|6,1|7)
1|11: (1|6,1|8,1|7)

1|10

1|3

1|9

1|2

1|71|8

node 1|8
ÒscaleÓ: (1,2,1)

node 1|3
ÒscaleÓ: (1,2,1)
ÒparentÓ: 1|8

texture 1|9
<texture data>

material 1|2
ÒcolorÓ: (0,1,0)
ÒtextureÓ: 1|9

shape 1|7
ÒmaterialÓ: 1|2
<shape data>

 1|3 1|8 1|1

 1|2 1|9 1|7

 1|6 1|5 1|4

texel data
1|3: (0,1,0)
1|6: (1,0,1)
1|7: (1,0,0)

É

camera 1|6
ÒfovÓ: 45

1|6

1|8 1|2 1|5

keyframe data
1|8: 0 sec, (3,0,4)
1|2: 1 sec, (2,1,4)
1|5: 3 sec, (0,3,4)

time

x
y

z

1|11

Fig. 2. System data model. We represent scenes as collection of objects with arbitrary properties defined on them, here shown with di�erent colors to indicate
object types. Each object has a unique identifier composed of a version id and an element id, indicated asversion | element. Each identifier is unique in the
whole repository. We store all data in hash tables where keys are either element identifiers or property names. Simple properties, like colors or transforms, are
stored and tracked atomically. References, shown here in orange, are stored using unique identifiers and can refer to any element in the whole repository.
Complex data is versioned at a finer granularity. Shapes, textures and animations are stored as hash tables of respectively vertices and faces, texels and
keyframes. Each of these elements has a unique identifier that can be used as references. Note for example how shape faces use references to vertex identifiers.
We use this representation since it naturally supports sparsity and since references are maintained throughout the whole repository, as shown in the next
figure.

store scene content as a hash table of identi�ers-objects pairs. Each
object is itself an unordered collection of arbitrary properties, stored
as hash tables of property name-value pairs. Property values might
be any basic data type used in graphics, e.g., colors, transforms,
strings etc. We use this model since it is trivial to extend and can
accommodate a large variety of object and property types.

In addition to these properties, objects can store references to
other objects, e.g., texture references in materials, or mesh references
in transform nodes. We do not model transformation hierarchies
explicitly, by instead store parent references in each transform node,
since this is more general and e�cient. In our model, all references
together form a direct acyclic graph of scene objects. This represen-
tation let us model arbitrary objects relationships that were found
helpful in [Santoni et al. 2018].

This representation is su�cient to describe objects that have no
internal structures, such as camera, materials, environment maps,
etc. To support other objects, we consider three other data domains
that di�er in the way internal data is organized.

Shape Data. We model shapes as sets of vertices connected to-
gether in polygonal faces. Vertices and faces have unique identi�ers
de�ned for them. Vertex data is stored in as hash tables of identi�er-
value pairs. We use a separate tables for each vertex property, e.g.,
positions or colors, since this allows us to store more precisely the
vertex data that changes between versions. Face data is stored as a
set of identi�er-references pairs, where each face holds references
to the vertices that de�ne it. We treat indexed shape data as a spe-
cial case since the references between faces and vertices need to be
maintained during merges otherwise the resulting shape would lose
its topological properties.

We support two types of face topologies. In the most common
case, one face topology is used for all vertex data. This corresponds
to the common indexed mesh data structure. We also support the
general case of di�erent face topologies for each vertex property,
as shown in Fig. 3. Thisface-varyingrepresentation is completely

general and allows us to model any data sharing between faces or
discontinuity in vertex data without vertex duplication. In particular,
we can represent per-face values, uv seams, smoothing groups, etc.
This representation is the one commonly used in 3D editors and
is necessary in subdivision surface modeling since positions and
texture coordinates are subdivided with di�erent topologies.

Texture Data . We model textures as an N-dimensional sparse
grids of values, where each grid cell's identi�er is de�ned by the
cell location in the grid. Texture data is stored as a hash table of
identi�er-value pairs, where values can be any property type. We
treat texture data as a special case for e�ciency reasons. We focus
on implementation on 2D texture since this is the data available
to us, but our representation and version control operations are
independent of the dimensionality and sparsity of the grid, so we
can natively supported sparse voxels too.

Animation Data . We model animations as an ordered collection
of keyframes. Each keyframe is uniquely identi�ed, and stores the
keyframe time and a set of arbitrary values, e.g., translation, rotation
and scaling. Once again we use a hash table of identi�er-value pairs
to sparsely store data. We treat animations as a special case since
keyframes order needs to be maintained during merges.

Encoding Changes. We use hash tables extensively in our data
model since they allow us to encode changes sparsely. We model
edits as addition, updates or deletion of elements. Additions are en-
coded as new key-value pairs. Updates are encoded as new values
for existing keys. Deletions are encoded as keys with an associated
�null� value. Sparsity of edits is inherent in this encoding. Further-
more references are maintained even if the referred-to objects are
not present in the change set or version since we index elements by
unique ids and not pointers.

Tracking Edit Provenance . In our system, each unique identi-
�er is a pair of values. The �rst identi�es the version that the change
comes from, while the latter identi�es the element in that version.
This allows us to identify elements across the whole repository and

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:6 ˆ Edoardo Carra and Fabio Pellacini

Position
Topology !

Texture Coords
Topology

Rendered w/
Subdivision

Fig. 3. We support face-varying shapes by storing di�erent topologies for
each vertex property, avoiding vertex duplication. This representation is
general, preserves edits be�er and is needed for subdivision modeling.

keep track of edit provenance explicitly during di� and merge oper-
ations. We will show later that this makes merging very e�cient to
implement, and allows us to trivially show which artist performs
each edit as shown in all images in this paper.

Serialization . Changes are serialized to disk using a JSON encod-
ing for scene objects, since this format is widely used and matches
our data model. We use binary sparse arrays to serialize shape, tex-
ture and animation data, to gain speed and save disk space. All data
is compressed with a fast and lossless codec [Alakuijala et al. 2018].
While this aspect is not crucial for our work, and could certainly be
implemented more e�ciently, it allows us to reach small repository
sizes and fast serialization speed with ease.

Discussion. Our table-based representation for changes di�ers
substantially from prior work. The most common encoding in the
academic literature [Gao et al. 2010; Neuhaus and Bunke 2007]
describes a change as an ordered sequence of editing operations
that transform a version into another. While this de�nition is simple
to give formally, it is complex and ine�cient in practice since large
edits are decomposed in ordered collections of small ones, where
each subsequent edit depends implicitly on all previous ones. To
the best of our knowledge, practical version control systems do not
use this representation.

The other common representation is to encode changes as sparse
arrays [Chacon 2009], which is a natural representation for �le-
centric version control since �les are modeled as ordered sequences.
Our �rst implementation used this encoding, since it seems more
e�cient than hash tables. It turns out though that this is not the
case for 3D scenes. First, sparse arrays do not map well to shape
data and scene nodes since these are not ordered collections. Second,
unique identi�ers needed to be re-computed for each version control
operations, which made the system signi�cantly slower in practice.
Third, while hash table accesses may generally be more expensive
than sparse arrays, in our experience this expense is reduced by
using e�cient hash table implementations, like the �Swiss tables�
we use [Google 2018]. Finally, the explicit tracking of version in-
formation makes the creation of visualizations and annotated di�s
very e�cient since this information does not have to be recreated
during the operations.

5 DIFFING AND MERGING ALGORITHMS
Version Control Workflow . To illustrate the operations of our
version control system, let us consider the work�ow for merging two
versions independently edited from an ancestor. First, the ancestor is
checked into the version control repository byconvertingthe scene
in our representation and serializing it. Then each version is checked
into the repository bydi�ng each version with the ancestor and
saving only the changes between them, to keep repository size small.
Finally, we perform athree-way mergethat takes the two change
sets and the converted ancestor, and generates a new scene that
contains all edits. Fig. 4 shows how this work�ow is implemented
in our system.

Scene Conversion. As scenes are checked into the repository,
we assign unique identi�ers to each element since these are not
tracked by 3D editing software. For shapes, textures, and animations
we use global counters to assign identi�ers. For scene objects, we
use the object name if available, or a global counter if names are not
present or are not unique. We embed in each identi�er a version
tag making the identi�ers unique throughout the repository and
allowing us to track the provenance of all edits. Scene data is then
copied in our table-based data structure using identi�ers as keys
and input data as values.

5.1 Di�: Computing Changes From Scenes
A di� algorithm takes an ancestor and an edited version as input,
and computes a set of changes that applied to the ancestor recreate
the version. In our work, we consider changes to be either additions,
deletions or updates of elements. The set of changes should be
minimal to keep the repository size small and to make merging
more accurate.

Design Tradeo�s . As reviewed in Sec. 2, we can formally prove
that for shape and scene hierarchies computing the minimal di� is
NP-hard. This implies that it is not feasible to compute the change
accurately. For this reason, all version control systems use some
domain-speci�c heuristics to compute a change that is reasonably
small. Designing di� heuristics is a trade-o� between change size,
computation time, and supported edits. On this trade-o�, we di�er
substantially from prior work.

First,we make no assumption on editing work�ows, trading o� gen-
erality for speed and precision. For example, in the case of shapes,
we handle man-made and organic models edited by sculpting, low-
poly and subdivision modeling. Within these domains, we make no
assumptions on shape properties or editing operations. An alterna-
tive tradeo� would have been to focus on speci�c domains such as
low-poly modeling [Salvati et al. 2015], sculpting [Calabrese et al.
2016] or shape components [Dobo² et al. 2014]. These solutions are
certainly more precise and e�cient than our own in their respective
domains, but cannot handle all cases. In text, this is similar to the
di�erence between Git, that supports code just as well as poetry,
and Google Docs that can only handle its own documents.

Second,we prioritize scalability over change size. Modern ver-
sion control guidelines favor frequent commits with heavy use of
branches [Chacon 2009] to minimize divergence between versions,
thus reducing the chance of con�icts. This requires very fast ver-
sion control operations so that di�ng and merging do not become

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:7

Ancestor Version 1 Merged

0|3 0|6

0|80|7

0|11
0|10

 0|3 0|8

 0|2 0|9

0|8 0|2 0|5

1|2 1|5

1|7

1|15

1|12

1|4

 1|7 1|2

 1|5 1|1

1|5 1|31|7

2|1
2|4

2|72|9

2|13
2|19

 2|9 2|3

 2|4 2|8

2|7 2|3 2|8

0|3 0|6

0|7

0|10

 0|3 0|8

 0|2 0|9

0|2 0|5

0|3
0|6

0|80|7

0|11
0|10

 0|3 0|8

 0|2 0|9

0|8 0|2 0|5

0|3=2|1
0|6

0|7

0|10

1|12

1|4

 0|3 0|8
=1|2

 0|2
=2|4

 0|9

0|2=2|3 0|51|7

0|3

 0|2

0|2

0|8

0|11
1|12

1|4

1|70|8

Scene Matching ChangeScene
Version 2

Scene Matching Change Scene

S
ha

pe
s

Te
xt

ur
es

A
ni

m
at

io
ns

N
od

es

 0|8

0|30|8

0|7

0|2

0|9 0|5

0|1 1|71|2

1|1

1|4

1|5 1|3

0|30|8

0|7

0|2

0|9 0|5

1|4 0|1 2|12|7

2|3

2|9

2|2 2|8

2|4

2|5

0|30|8

0|7

0|2

0|9 0|5

0|1

2|5 2|3

0|30|8

0|7=2|3

02=1|4

0|9 0|52|5

Fig. 4. To merge two versions edited from an ancestor, we first check scenes into our repository. The ancestor is stored fully, while for the versions we only store
the changes from the ancestor, to keep repository size small. We compute changes by first determining matching elements between a version and the ancestor.
We perform matching at the finest granularity for all object types. A matching results in assigning the ancestor's identifiers to the version's identifiers. From
this matching, we extract changes by comparing the ancestor tables' values with the version tables' values using the matched identifiers as keys. We represent
changes as sets of additions, deletions and updates, where additions use the version identifiers while deletions and updates use the ancestor identifiers. We
indicate these operations with the colors used in Fig. 1. Since identifiers are unique across the whole repository, a merge is implemented by simply applying
both change sets to the ancestor, for non conflicting edits. Conflicts can be detected by checking whether the same key is present in both change sets. The
merged scene retains provenance of the edits allowing us to visualize easily which version an edit came from.

the bottleneck for artists. This is exacerbated by the fact that we
version whole scenes at once rather than individual components.
For these reasons, we favor heuristics that are fast, at the price of
possibly larger change sets. As an example, in the case of shapes,
[Denning and Pellacini 2013] present a precise heuristic that takes
tens of minutes for 100 thousands polygons, while we di� 10 mil-
lions polygons in seconds. While one could argue that smaller di�s
are better no matter the cost, the reality is that even those heuristic
may be equally bad on some editing work�ow. In the case of shapes,
[Denning and Pellacini 2013] likely fails for high-poly models that
have been remeshed (as shown in the original paper) or sculpted
with dynamic topology.

Matching Elements . In our implementation, we split di�ng into
two operations. First, for each element in a version, we determine its
matching element in the ancestor, i.e.,the element from which it was
derived. From this assignment, we �rst prune all objects which have
not changed between versions, using a fast content hash to reduce
the comparisons cost, just like Git does. For objects that di�er, we
then extract a set of changes. In this split, matching elements is
the computationally demanding part that needs to be solved using
heuristics. We use di�erent heuristics for di�erent object types, since
they model di�erent relationships. Fig. 5 shows the di� algorithm.

Matching Scene Objects . We model scenes as unordered collec-
tion of objects. For most of these, artists assign names that are used
to identify objects in editors. These names cannot be considered

unique since they might be missing or duplicated. Based on this
observation,we match objects based on their names, while detecting
renaming operations when necessary. This is akin to the way Git
handles �les in the �lesystem [Chacon 2009].

During scene conversion, we generate unique identi�ers from
objects names. When di�ng, we consider two objects matched if
they have the same identi�er. Objects that are not matched are
considered deleted, if they are found in the ancestor but not in the
edited version, or added otherwise. Of these objects, some might
have been renamed resulting in a false add-delete pair. We describe
how renaming operations are handled later.

For matched objects, we consider properties that have changed
as updates. Simple properties, such as colors or transforms, are
updated atomically. More complex properties, such as shape, image
and animation data, are themselves di�ed to track changes with
�ner granularity.

Matching Shape Data . [Denning and Pellacini 2013] show that
di�ng polygonal meshes is NP-hard and propose an heuristic that
computes partial matches by greedily assigning vertices and faces
in an iterative scheme similar to wavefront propagation with back-
tracking. This leads to computation times that are too long to be
practical. We take a di�erent approach andmatch vertices and faces
separately, with vertices matched on their distances and faces matched
on their vertex indices.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:8 ˆ Edoardo Carra and Fabio Pellacini

scene
nodes

Handle
Renaming

Check Edits with
Content Hashes

Compute
Property Di !

Match by
Name

Di ! Property
Values

Match by
Name

Di ! Object
Matchings

textures

Match by
Pixel Index

Di ! Texel
Values

animations

Match using
String Edit
Distance

Di ! Keyframe
Values

Save New
Objects

Save Edited
Values

Save Edited
References

Save Edited
Texels

Save Edited
Keyframes

mesh vertices

Match
Names

Match with
Vertex Hashes

Match by Nearest
Neighbours Lookup

Di ! Vertex
Values

M

U M

M

M Save New Values

Save New References

Save New Texels

Save New Keyframes

references

simple values

M

U

Save New
Vertices

Save Edited
Vertices

mesh faces

Match with
Vertex Matchings

Apply Vertex
Matchings

To Face Indices

U

U

U

U

M

M

M

M

U

U

U

U

M

U

Di! Face
Indices

M

Save New
Faces

Save Edited
Faces

M

U

U

Fig. 5. Diagram of the di� algorithm described in Sec. 5.1.

We match vertices in two steps. First, we �nd all vertices that
have not changed between versions. We implement this e�ciently
by constructing a hash table of the version's vertices where the keys
are the concatenated vertex properties and the values are the vertex
identi�ers. For each ancestor vertex, we perform a table lookup to
determine whether it exists in the version.

The vertices that remain unmatched have changed between ver-
sions. Since we support arbitrary editing operations, the change of
vertex properties might have been signi�cant and may be coupled
with changes to adjacencies. For this reason, we only attempt to
�nd matches between vertices that have moved little between ver-
sion, making the assumption that small edits can be matched well
while large, arbitrary, edits cannot. We implement this e�ciently by
performing nearest neighbor lookups of each unmatched ancestor
vertex with the unmatched versions ones. In our implementation,
we build a kd-tree using only the vertex positions and lookup can-
didates within a small radius computed as the average edge length.
In a previous version of our system, we used hash grids for nearest
neighbor lookups, like many animation systems, but found that
our two-phase look using hash tables supported by a kd-tree was
signi�cantly faster on large meshes since the table lookups prune
the possible matches e�ectively.

Of all candidates, we assign the ones that has the smallest distance
considering all vertex properties, that we measure as Euclidean dis-
tances for all properties except normals, whose distance is measured
as the cosine between directions. We match vertices greedily which
corresponds to minimizing the total cost of the match in a greedy
fashion.

Faces are matched starting from vertex matchings. For each face
in the version, we map the vertex indices using vertex matches. This
rewrites the ancestor face in terms of the version indices. We can
now compare faces across versions to �nd a matching face if present.
Note that since our identi�ers embed a version tag, we naturally
support faces with matched and unmatched vertices, which makes
the algorithm simple to implement, fast to execute and general.

For face-varying shapes, we introduce an additional level of in-
direction. In this case, we have di�erent topologies for each vertex
property. We solve this problem by introducing face-varying ver-
tices, which are de�ned as the concatenation of the vertex identi�ers
for each property. Face-varying vertices are unique by de�nition so
they can be used as identi�ers. We de�ne face-varying faces as the
faces written in terms of face-varying vertices. We can now match
face-varying vertices and faces with the same algorithm as above.

Matching Texture Data . For texture data, we observe that tex-
tures are de�ned over a regular �xed domain that is unlikely to
change often. For this reason, we assign identi�ers directly based on
texels coordinates. This is a trivial heuristic that works well enough
in practice since we consider images used for texturing. The main
concern here is that we do not detect explicitly image resizing oper-
ations. For version control thought, this is acceptable since during
resizing most pixel values changes due to resampling and �ltering.
So even if we recognized the operation explicitly, we would generate
an identical change set, making the added complexity not needed.

Matching Animation Data . We model animation data as a set
of ordered keyframes with arbitrary properties de�ned for each.
When matching, we want to take into account the order to be able
to maintain it during merging. For this reason, we minimize the
string edit distance [Levenshtein 1966] to �nd a matching between
keyframe data.

Matching Renamed Objects . As we discussed previously, ob-
jects names are not reliable identi�ers. So while we use them to
initiate the matching procedure, we do not rely on them entirely
and detect renamed objects separately.For objects containing shapes,
textures or animations, we match objects by their properties. We im-
plement this by checking whether each pair of added and deleted
objects have identical properties, and if so they are added to the
matching set. This heuristic fails for objects that represent transform
groups in large hierarchies, since many nodes have the same local
properties. In this case,we match transform groups with the same
objects' properties using the bounding box of the subtree they subtend.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:9

We take inspiration from [Dobo² et al. 2014] and augment node
properties with the size and center of the node bounding box. We
then greedily match pairs of added and deleted objects using object's
and bounding box properties. This heuristic is similar to the way
Git matches �les and di�ers from minimizing the tree edit distance
[Zhang 1989]. The tree edit distance matches trees' topologies, but
is NP-hard. We instead match objects properties augmented by their
world bounding boxes to take into account the position of a node in
the hierarchy.

Extracting Changes . Once a matching is computed, we extract
changes is a straightforward manner. For added elements, we insert
them in the change hash tables using the element's version identi�er.
For deleted elements, they are inserted in the change dictionaries
with the element's ancestor identi�er and a �null� value. Updated
elements are inserted in the change dictionaries using the ancestor
identi�ers and the version values. This simple encoding works for
all properties.

5.2 Merge: Combining Changes Together
Patching . A common operation in version control is to reconstruct
a version given its ancestor and change set. This operation is used
when we retrieve a version from the repository or send the change
set over a network. In our formulation, patching is implemented
by updating the ancestor's hash tables by adding, updating and
deleting elements using the keys and values stored in the change
set. After each chance set is fully applied, all scene data structures
are guaranteed to be in a well-formed state since the change set is
extracted from a version, which is by de�nition well-formed, as it
was matched to the ancestor.

The simplicity of our implementation stems from our version
control model that di�ers from prior work. Typically, changes are
expressed as ordered list of operations, each of which leaves the
data structure is a well-formed state [Gao et al. 2010; Levenshtein
1966; Zhang 1989]. We instead de�ne a change as a set of operations
that has to be applied as a whole to maintain the data structure,
and use a data model where partial information can be stored. This
implies that we do not have to validate reference consistency as we
apply updates, nor we need to check whether we have �dangling
references�. In this end, this results in a very e�cient and easy-to-
implement model.

Merging . The most common collaborative operation in version
control is the merge of two independently-edited versions starting
from a common ancestor. For each object, we �rst determine whether
the two change sets are independent, by checking whether the set
intersection of the keys of the changes' hash tables is empty. Since
updates and deletions are represented in both changes with the
ancestor identi�ers, this test detects whether two elements have
been updated concurrently or whether an element was updated in
a version and deleted in the other. [Salvati et al. 2015] showed that
this is a su�cient condition to determine whether version control
operations are independent.

If two change sets are independent, they can be applied concur-
rently to the ancestor just as we did for patching. When doing so, we
are guaranteed that the merged data structures are still well-formed
since we track identi�ers across versions.

Once again this seemingly simple algorithm comes from a key
observation that identi�ers and elements are unique across the
whole repository, not just across a scene, and that a change can
reference an element anywhere in the repository. Again this di�ers
from prior work, and is instead inspired by the use of content hashes
in Git [Chacon 2009].

Conflict Handling . On a single object, we mark all operations
as con�icted if at least one of them is. We do this since operations
have been applied together and their result may be semantically
meaningless if the operations were to be partially applied.

When con�icts are detected, merging cannot occur since we do
not know what change to apply to the elements. One solution would
be to adopt a policy for con�ict resolution and apply that policy.
But choosing which policy to use depends entirely on the applica-
tion domain. Let us consider the example of merging con�icting
edits in shapes. [Denning and Pellacini 2013] let a user choose a
preferred version and applies the selected changes together with
any other adjacent one, even if not con�icted, to maintain mesh
topology for subdivision modeling. [Salvati et al. 2015] disables the
con�icted operations, together with all subsequent operations that
may depend on them, to provide a natural work�ow in collaborative
low-poly modeling. [Calabrese et al. 2016] merges con�icted edits
using mesh laplacians, to support a natural work�ow for collabo-
rative sculpting. This means that we have at least three di�erent
policies just for shape modeling, and we can imagine others for
production environments. Text version control systems, that are
application independent, do not implement any con�ict handling
policy, but instead output text that contains both versions for each
con�icted change.

We take the same approach as text. For each object that has
con�icted edits, we output three copies corresponding to the edits
in the ancestor and the versions. On each object, we tag the edited
elements as shown in Fig. 6. The merged scene can then be edited in
any modeling package to adjust the con�ict, just like text merging.
This design choice is reasonable since con�icts are very rare if edits
are tracked with �ne granularity [Salvati et al. 2015] and since we
want our system to work for any editing work�ows.

6 RESULTS
Scenes and Edits. We tested our system on a variety of scenes,
from indoor to outdoor environments that include man-made and
natural objects. To test the scalability of the proposed system we
looked for the largest environments we found with a permissive
license and supported all features on those environments. We edited
these scenes in Blender and Photoshop, using several editing work-
�ows, including parameter adjustments, sculpting and painting,
instancing and layout, and scripting. For each scene, we perform
two independent edits and produce a merged result.

Tab. 1 collects statistics on scene complexity together with di� size
and timings. In Fig. 7, we edit indoor environments constructed from
a variety of shapes with rich materials. In Fig. 8, we edit large meshes
to show scalability with the complexity of single objects. In Fig. 9, we
edit scenes with a large number of objects, potentially instanced in
scene hierarchies, to show scalability with scene complexity. Fig. 10
shows an example which includes several subsequent edits, building
a result from scratch. Each snapshot represent the highlights of the

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:10 ˆ Edoardo Carra and Fabio Pellacini

Ancestor Version1 Version2 Merged

Fig. 6. Detected conflicts are shown in purple on the ancestor. A conflict occurs if the same property is edited on both versions, or if an element is deleted in a
version and edited in the other.

scene name scene scene scene scene scene scene scene repository di� merge
and format nodes shapes materials textures polygons vertices texels size time time

bathroom(obj) 856 | 4 | 5 856 | 4 | 5 33 | 1 | 0 9 | 2 | 1 591K | 153K | 435K 361K | 71K | 355K 15M | 253K | 755K 116M | 8.4M | 10M 0.17 | 0.17 0.23
bedroom(obj) 72 | 38 | 21 72 | 38 | 21 33 | 0 | 1 4 | 0 | 0 1.5M | 2.3M | 350K 1.1M | 1.6M | 194K 14M | 0 | 0 153M | 66M | 8.6M 2.44 | 0.35 1.85
kitchen(obj) 299 | 148 | 5 299 | 148 | 5 90 | 0 | 2 11 | 0 | 0 1.4M | 873K | 131K 818K | 482K | 65K 6.5M | 0 | 0 102M | 23M | 4.4M 0.91 | 0.18 0.93
livingroom(obj) 36 | 4 | 16 36 | 4 | 16 14 | 0 | 1 3 | 0 | 0 790K | 157K | 567K 452K | 78K | 358K 10.1M | 0 | 0 92M | 3.7M | 23M 0.14 | 0.98 0.59
hairball (obj) 1 | 1 | 1 1 | 1 | 1 1 | 0 | 0 0 | 0 | 0 2.9M | 15K | 16K 1.5M | 5K | 6K 0 | 0 | 0 100M | 11M | 11M 2.14 | 1.83 1.79
dragon(obj) 1 | 1 | 1 1 | 1 | 1 1 | 0 | 0 0 | 0 | 0 7.2M | 1.1M | 396K 21.6M | 3.1M | 1.2M 0 | 0 | 0 800M | 71M | 43M 15.68 | 14.51 9.21
bistro(obj) 1132 | 28 | 106 1132 | 28 | 106 66 | 0 | 1 97 | 0 | 0 1M | 21K | 8K 766K | 15K | 6K 275.7M | 0 | 0 2.7G | 3.5M | 1.0M 0.03 | 0.40 0.78
paris(gltf) 1615 | 70 | 17 1615 | 70 | 61 132 | 1 | 0 214 | 0 | 0 2.8M | 57K | 5K 3M | 52K | 3K 1G | 0 | 0 1.2G | 12M | 2.5M 1.46 | 1.39 3.31
forest(gltf) 12755 | 900 | 4 159 | 1 | 2 160 | 0 | 0 6 | 0 | 0 1.2M | 0 | 0 2M | 0 | 0 760K | 0 | 0 109M | 4K | 1K 0.34 | 0.04 0.63
landscape(gltf) 407568 | 6399 | 2 372 | 2 | 2 500 | 0 | 0 287 | 0 | 0 27.8M | 0 | 0 24.6M | 0 | 0 250M | 0 | 0 1.78G | 35K | 1K 0.85 | 1.13 1.71
teaser(obj) 1004 | 118 | 21 1004 | 118 | 21 284 | 0 | 4 220 | 0 | 0 10M | 1.2M | 0 9.4M | 951K | 0 80.3M | 0 | 0 843M | 50M | 6.3M 1.88 | 0.24 3.77
animation(gltf) 35 | 0 | 0 35 | 0 | 0 5 | 0 | 0 0 | 0 | 0 38K | 0 | 0 34K | 0 | 0 0 | 0 | 0 21M | 52K | 24K 0.06 | 0.00 0.01

Table 1. Scene statistics, repository size and algorithm timings for all results in this paper. For scene statistics and repository size we show values corresponding
to the ancestor and the changes detected in the two edited versions. Di� and merge times are in seconds and correspond to di�ing each version separately
and merging both versions together. The animation scene has 101 animations where we edit 4 and 11 respectively in version 1 and 2.

changes respect to the previous version. Finally, in Fig. 11 we show
an edited animation.

File Formats . We support the OBJ and glTF �le formats. OBJ
scenes have face-varying shapes, materials and textures. glTF scenes
have vertex-sharing shapes, materials, textures and cameras, orga-
nized in a scene graph with instancing.

Robustness. As we discuss before, our data model implies that
di�s are conservative and merges robust. To visually demonstrate
this robustness, we perform large edits and render scenes with a
path tracer, which would show artifacts if any scene element was
merged incorrectly. As can be seen from the images, the merged
scenes render with no artifact while being signi�cantly di�erent
from the ancestor. Edited elements are shown in the false-color
visualizations showing that the edits come from both versions and
may overlap on the same object.We do not know of any other version
control system for 3D scenes that could support all these scene and edit
types.

Di� Size . We edited scenes comprised of 591K to 10M polygons,
760K to 1G texels, and up to 400 thousand objects. Scene sizes
in our format go from 92 megabytes to 2.7 gigabytes. On these
environments, we perform large edits that were detected precisely
by our di� algorithm. This resulted in small change sets going from
20 kilobytes to 66 megabytes. Change size depends on the number
of elements changed and can be made small only because we detect
changes with a very �ne granularity. This shows that using our
version control is very advantageous for archiving multiple scene
versions.

Execution Speed. Di�ng and merging operation are also fast
especially considering that we process whole scenes at once. We
pro�led our algorithms on a 4 cores, 3.5 GHz iMac with 32 GB
RAM. We implemented our system in C++ using o�-the-shelf data
structures and performing no low-level optimization. We parallelize
our system by processing scene objects in parallel.

For small scenes, di�ng takes less than a second, going up to a
few seconds for larger environments. The worst case are processing
large meshes that may take up to 10 seconds. Compared to other
scenes, this change in performance is due to the fact that this speci�c
case was not parallelized in our implementation. Di� times change
also with edit size, becoming faster as edits get smaller. Merge times
depend themselves on both scene and edit size and are roughly in
the same order of magnitude of the corresponding di�s.

Overall, these execution times are fast enough to be used very
frequently, as typical in distributed version control work�ows. In
fact, opening the scenes in 3D editors is often slower than di�ng
and merging them, meaning that version control can be integrated
gracefully in all artists work�ows.

6.1 Discussion and Limitations
Discussion. While we focus on the type of scene objects present
in the datasets available to us, our framework isgeneraland can be
easily extended. We only require that the new data structures can
be projected on separate hash tables with references expressed as
tables' keys.

For example, while our implementation focuses on polygon meshes
and subdivision surfaces, the same indexed representation can be

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:11

Ancestor Merged Ancestor Merged

Fig. 7. Merged edits on indoor environments, showing changes to shapes, materials, textures and scene nodes. Note how artists can work concurrently on the
same objects, shown in cyan, provided that they do not edit the same property.

Ancestor Merged Ancestor Merged

Fig. 8. Merged edits on complex geometry models, showing scalability with geometric complexity and precision in detecting changes. Artists can work on the
same model provided that the edits do not overlap.

used for parametric surfaces like NURBS, hair models encoded as
indexed poly-curves, CSG tress encoded as additional properties
stored on mesh objects, and procedural models encoded as a string
property that contains the generating code. For textures, we can
trivially support sparse 2D textures, PTex and sparse 3D textures
without changes.

While we are forced to use heuristics, our approach isconservative
in that it may detect updates as add-delete pairs, or vice-versa, but
will never miss any edit. In practice, this has few limitations in most
cases, making repositories slightly larger and con�icts less precise.

But, as our results show, these are of little consequence on all the
tested scenes.

Limitations . One limitation of our work is when objects change
almost entirely. For example, when remeshing a shape, or resizing an
image, nearly all values are changed. Our algorithm will mark each
element as updated or as add-delete pair if the change is too large.
While this is strictly correct from a version control perspective, it
does not provide a useful visualization and would fail to merge if
any other edit was performed the same object. This is a known
problem and in fact text version control systems mark the whole �le

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:12 ˆ Edoardo Carra and Fabio Pellacini

Ancestor Merged Ancestor Merged

Fig. 9. Merged edits to large environments to show the scalability of our approach.

Version 1 Version 2 Version 3 Version 4

Version 5 Version 6 Version 7 Version 8

Fig. 10. Example of construction sequence of an environment inspired by thekitchenscene. For each revision, we highlight the changed and added elements
with respect to the previous version. Both di� size and timing depend on the nature of the edit. Di� size ranges from 4Kb in Version 8 for material changes, to
39Mb in Version 4 when adding many newly created objects. Di� time ranges from 0.0004s in Version 1 when creating new scene objects, to 2.57s in Version 7
when updating geometry.

as changed if enough lines are di�erent. To ameliorate this problem
we could attempt to detect these cases and switch to a softer di�
and merge approach as in [Calabrese et al. 2016]. But doing so in a
general settings requires adding manually-tweaked thresholds and
many additional algorithms each tuned for a speci�c global change.

More generally, change visualization is still an open problem that
we have not investigated in this paper, since it is orthogonal to our
main goals. While our visualization proved useful, certainly other

might be considered like specialized renderers and user interfaces
to interactively explore changes and view them in context.

Finally, we want to be able to handle other �le formats as well as
out-of-core scenes. We believe that these are mostly implementation
e�orts and would not change the framework.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:13

1.1 sec 2 sec 3.6 sec
A

nc
es

to
r

M
er

ge
d

A
nc

es
to

r

0 0.8 1.6 2.4 3.2 4sec

V
er

si
on

 1

0 0.8 1.6 2.4 3.2 4sec

M
er

ge
d

0 0.8 1.6 2.4 3.2 4sec

V
er

si
on

 2

0 0.8 1.6 2.4 3.2 4sec

2.5 sec 1.1 sec 2 sec 3.6 sec2.5 sec

Fig. 11. Selected frames of merged animations for ancestor and merged scene together with plo�ed values of the rotation curves for the x, y, z axes. The plot
refers to a single animation, and shows that it has been modified in Version 1 at 1.2s, and in Version 2 at 3s. The merged result shows that the resulting
rotation includes edits from both versions.

Ancestor Merged Ancestor Merged

Fig. 12. Comparison between MeshGit (le�) and Scenegit (right), where we show that both system detect and merge changes in the manner, with SceneGit
running significantly faster. (MeshGits colors are slightly di�erent since we use the original viewer.)

7 VALIDATION

7.1 Comparison with Prior Work
To the best of our knowledge,there is no version control system for
whole 3D scenes that tracks all edits at their �nest granularity as our
system does.Instead, we compare to prior work that specializes in
di�erent domains. For shape data, we compare toMeshGit[Denning
and Pellacini 2013] which is the state of the art in polygonal mesh
version control. For scene nodes, we compare toJsonDi�Patch[Ei-
delman 2006] that implements a state of the art solution for tree-like
data, like our scene graph. Of the various version control systems,
we compare toGit [Chacon 2009], since it is very popular and was
the inspiration for our work, andPlasticSCM[CodiceSoftware 2005],
that is used in the gaming industry and natively supports single 3D
assets like meshes and images.

MeshGit . For meshes, we compared toMeshGitby running the
authors' implementation on edits made to a man-made object, from
the original paper, and an organic sculpture, shown in Fig. 12. In the

former, we performed typical hard-surface mesh operations, such as
duplications, deletions and vertex editing, while in the latter, we use
sculpting and cloning tools. In both cases, we �nd the same edits
asMeshGitbut at a signi�cantly faster time. As shown in Tab. 2,
SceneGitis 200 times faster thanMeshGiton the smaller mesh and
more than 1500 faster on the larger one. Furthermore,MeshGitdid
not converge on the edits in Fig. 8 (we stopped it after 12 hours).
This larger execution time comes from the whole-mesh iterative
optimization, compared to our local greedy approach. nonetheless
the same edits were found. Another di�erence withMeshGitis that
we adopt a more strict con�ict policy where concurrent edits to
the same mesh elements are always con�icted, whileMeshGitcan
handle topological and geometric changes separately. In some rare
cases, this means that we may indicate a con�ict whenMeshGit
does not, as for example in Figure 8 of theMeshGitpaper.

JsonDi�Patch . For the node hierarchy, we compare to a tree-
based versioning method, namelyJsonDi�Patch, by di�ng and merg-
ing the scene hierarchy of theParisexamples showed in Fig. 9. Since

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

1:14 ˆ Edoardo Carra and Fabio Pellacini

scene method repository size di� time merge time

shuttle MeshGit 44.6M | 14M | 11.7M 25.26 | 11.7 0.13
(obj) SceneGit 9.2M| 4.5M | 2.7M 0.11| 0.094 0.063
dragonMeshGit 132.8M | 107.5M | 38.7M 1572.17 | 113.5 3.02
(obj) SceneGit 31.5M| 24.5M | 1.5M 1.08| 0.31 0.44

scene method repository size di� time con�icts

bistro Git 1.87G | 206.6M | 219.5M 16.79 | 18.11 170
(obj) Plastic SCM 2.96G | 206.8M | 219.7M 12.44 | 14.04 1841

SceneGit 2.7G| 3.5M | 1.0M 0.03| 0.4 0
paris Git 1.06G | 5M | 5M 3.23 | 3.13 17161
(gltf) Plastic SCM 2.26G | 306.6M | 129.2M 14.32 | 8.33 16426

JsonDi�Patch N/A 0.562 | 0.696 18667
SceneGit 1.2G| 12M | 2.5M 1.46| 1.39 0

Table 2.Top:Comparison of repository size and di� and merge timings
betweenSceneGitand MeshGit. Bo�om: Comparison of repository size,
di� timings, and numer of conflicts betweenSceneGit, Git, PlasticSCMand
JsonDi�Patch.

JsonDi�Patchdoes not support glTF, we converted the hierarchy to a
format natively supported. After the merge, we marked as con�icted
all nodes thatJsonDi�Patchwas not able to properly edit. Even if
only a few nodes were edited, almost all nodes where marked as
con�icted (18667 out of 18980). This indicates thatJsonDi�Patch
was not able to properly recognized the renamed and edited nodes,
essentially leaving the scene in a corrupted state.

Plastic SCM and Git . Finally, we compare our system with two
generic version control systems,Git and PlasticSCM. Both these
system do not have specialized heuristics to handle 3D environment,
but they nonetheless support di�ng and merging of both OBJ and
glTF �les. For this comparison we used theBistroandParisscenes
shown in Fig. 9. Tab. 2 shows that both version control systems have
signi�cant issues when handling scene data. Missed matches cause
con�icts together with very large repository sizes, even if the initial
edits are small. Our system takes a di�erent approach and matches
scene elements directly and with �ne granularity using per-domain
heuristics. In this manner, we �nd matches precisely which leads
to more precise change detection, that reduces both the repository
size and the chance of con�icts.

Discussion. SceneGitsits in the middle of the spectrum between
more domain-speci�c versioning methods, such asMeshGit, and
less domain-speci�c versioning methods, such asGit or Plastic-
SCM. Compared to less domain speci�c methods,SceneGituses
domain knowledge to �nd better correspondences, resulting in less
detected con�icts and improved performance. Compared to more
domain-speci�c methods,SceneGitaggressively simpli�es the cor-
respondence search, resulting in more potential con�icts, and less
accurate provenance tracking, but greatly increased performance
and scalability. This tradeo� is what makesSceneGita practical
version control scheme.

7.2 User Study
We ran a user study to evaluate the usefulness of our system in
collaborative editing sessions. The existing practice in industry is to
avoid con�icts by assigning di�erent assets to di�erent artists. We

instead asked pairs of users to edit a scene collaboratively, starting
from a common ancestor, then creating two versions, one for each
users, and �nally merging the edits with our system. In our setup,
users could freely perform any edit they desired without restrictions.
This is the same work�ow used when editing code in Git. At the
end of each sessions, we asked users to evaluate (1) whether the
edits highlighted in di� visualizations correspond to their edits, (2)
whether the path-traced merged scenes respect their edits, and (3)
whether using our system's work�ow simpli�ed collaboration. We
summarize here the main results of the study and include all the
edited scenes and the study questionnaire in supplemental.

Experiment setup . We recruited 16 subjects from di�erent back-
grounds, that were either novice or pro�cient users of 3D design
tools. We ran the user study in a controlled laboratory setup with
sessions that include two users of the same skill level. We ask sub-
jects to edit three scenes collaboratively, starting respectively from
the ancestors of thebedroomandkitchenscenes in Fig. 7, and the
teaserscene in Fig. 1. We choose to edit large environments to make
the task more realistic.

Before each editing sessions, subjects are asked to have a short
meeting to decide the look the �nal scene should have. Each user
then edits the scene independently for 15 minutes, with both users
starting from same model. We let subjects choose edits freely, asking
only that they edit at least once a shape, a material and a scene node.
We ask subjects to work individually and without communication
while editing, to simulate an o�ine interaction between users, like
Git, and ensure that con�icts are not avoided by simply agreeing to
edit di�erent objects.

�antitative Evalutation . After each editing session, the two
edited versions are di�ed and merged together. Subjects are then
shown a composite image like Fig. 1 and asked to rate how well
the highlights in the di� visualization represent their edits, how
well the rendering of merged scene respects their edits, and how
much the system simpli�ed the process of combining the operations
from both users. For these questions, we used a 5-point Likert scale,
ranging from 1 (�strongly disagree�) to 5 (�strongly agree�).

All 16 users strongly agree that the di� highlights represent their
edits and that the and merged scene respects them. This means
that our system �nds the edits reliably and that the merged scene
incorporate both users edits correctly. No con�icts were found in
these tests. All subjects also agree that using out system simpli�es
the process of combining the operations from both users, with with
14 of 16 users strongly agreeing to this. For all these results, we
reject the null hypothesis, indicating with statistically signi�cance
(p < 0:05) that users had clear opinions regarding our system.

We also asked subjects whether they would like to have out sys-
tem integrated in a collaborative environment in a binary �Yes/No�
question. All 16 users responded positively to this question.

�alitative Feedback . In free-form comments, subjects men-
tioned that they found the di� highlights useful since without them
it is hard to �nd the edits of the other user, especially in scenes
that contain a lot of details. We cite here a few comments: �I found
the di� image very useful because it allows to clearly and easily
recognize all the areas where the users intervene�; �The distinct
coloring of the elements modi�ed by the subjects gave me an ad-
vantage recognizing them in the merge image; it could be di�cult

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

SceneGit: A Practical System for Di�ing and Merging 3D Environments ˆ 1:15

otherwise�; �The di� image helps visualizing the operations made
on the original scene by both users.�. Looking at the merged result,
users were satis�ed since they found that all edits performed were
correctly shown: �I am satis�ed ..., in all three cases, I saw all my
edits�.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a version control system for 3D envi-
ronments. Our system is general in terms of scene objects, editing
work�ows, and �le formats. We tested our system with a variety of
complex scenes and found it e�cient and robust in all cases. In the
future, we plan to extend our work to handle more objects types,
such as NURBS, faster execution speed and more �le formats.

ACKNOWLEDGMENTS
This work was partially supported by Intel Corporation and MIUR
under grant PRINDSurf andDipartimenti di eccellenza 2018-2022of
the Department of Computer Science at Sapienza. For the models, we
thank G. Llaguno, Jay-Artist, Mareck, SlykDrako, Wig42, S. Laine, T.
Karras, Stanford University, Amazon Lumberyard, O. Deussen, J. W.
Schliep, B, Kahraman, T. Dapper, Kuhn and Halil Kantarci [Bitterli
2016; Lumberyard 2017; McGuire 2017; Pharr and Humphreys 2004;
Sketchfab 2011; Stanford 1994].

REFERENCES
Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert Obryk,

Zoltan Szabadka, and Lode Vandevenne. 2018. Brotli: A General-Purpose Data
Compressor.ACM Trans. Inf. Syst.37, 1 (2018).

Benedikt Bitterli. 2016. Rendering resources. (2016). https://benedikt-bitterli.me/
resources/

H. Bunke. 1997. On a Relation Between Graph Edit Distance and Maximum Common
Subgraph.Pattern Recogn. Lett.18, 9 (1997).

Claudio Calabrese, Gabriele Salvati, Marco Tarini, and Fabio Pellacini. 2016. cSculpt: a
system for collaborative sculpting.ACM Trans. Graph.35, 4 (2016).

Scott Chacon. 2009.Pro Git. Apress.
Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Szymon Rusinkiewicz, and Michael Wand.

2011. Computing Correspondences in Geometric Data Sets.Eurographics 2011
Tutorial (2011).

Will Chang and Matthias Zwicker. 2008. Automatic Registration for Articulated Shapes.
Computer Graphics Forum27, 5 (2008).

Hsiang-Ting Chen, Tovi Grossman, Li-Yi Wei, Ryan M. Schmidt, Björn Hartmann,
George Fitzmaurice, and Maneesh Agrawala. 2014. History Assisted View Authoring
for 3D Models. InProc. SIGCHI.

Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear revision control
for images.ACM Trans. Graph.30 (2011).

Fernando Chirigati, Juliana Freire, David Koop, and Cláudio Silva. 2013. VisTrails
provenance traces for benchmarking. InACM International Conference Proceeding
Series.

Clara.io. 2014. Browser and cloud based modelling. https://clara.io/. (2014).
CodiceSoftware. 2005. Plastic SCM. https://plasticscm.com/. (2005).
Timothee Cour, Praveen Srinivasan, and Jianbo Shi. 2007. Balanced Graph Matching.

In Advances in Neural Information Processing Systems 19, B. Schölkopf, J. C. Platt,
and T. Ho�man (Eds.).

Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive
Visualization of Mesh Construction Sequences.ACM Trans. Graph.30, 4 (2011).

Jonathan D. Denning and Fabio Pellacini. 2013. MeshGit: Di�ng and Merging Meshes
for Polygonal Modeling.ACM Trans. Graph.32, 4 (2013).

Jonathan D. Denning, Valentina Tibaldo, and Fabio Pellacini. 2015. 3DFlow: Continuous
Summarization of Mesh Editing Work�ows.ACM Trans. Graph.34, 4 (2015).

Jozef Dobo², Carmen Fan, Sebastian Friston, and Charence Wong. 2018. Screen Space
3D Di�: A Fast and Reliable Method for Real-time 3D Di�erencing on the Web. In
Proceedings of the 23rd International ACM Conference on 3D Web Technology (Web3D
'18).

Jozef Dobo², Niloy J. Mitra, and Anthony Steed. 2014. 3D Timeline: Reverse Engineering
of a Part-based Provenance from Consecutive 3D Models.Computer Graphics Forum
(2014).

Jozef Dobo², Kristian Sons, Dmitri Rubinstein, Philipp Slusallek, and Anthony Steed.
2013. XML3DRepo: a REST API for version controlled 3D assets on the web. In
Web3D.

Jozef Dobo² and Anthony Steed. 2012a. 3D Di�: an interactive approach to mesh
di�erencing and con�ict resolution. InSIGGRAPH Asia Technical Briefs.

Jozef Dobo² and Anthony Steed. 2012b. 3D revision control framework. InWeb3D.
BenjamÃn Eidelman. 2006. jsondi�patch: Di� & patch JavaScript objects. (2006).

https://github.com/benjamine/jsondi�patch
David Eppstein, Michael T. Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Approx-

imate topological matching of quadrilateral meshes. (2008).
Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A Survey of Graph Edit

Distance.Pattern Analysis and Applications13, 1 (2010).
Shiry Ginosar, De Pombo, Luis Fernando, Maneesh Agrawala, and Bjorn Hartmann.

2013. Authoring multi-stage code examples with editable code histories. InProc.
UIST.

Google. 2016. Google Documents. http://docs.google.com. (2016).
Google. 2018. Abseil Swiss Tables. (2018). https://abseil.io/blog/20180927-swisstables
Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo Igarashi.

2009. Generating Photo Manipulation Tutorials by Demonstration.ACM Trans.
Graph.28, 3 (2009).

Tovi Grossman, Justin Matejka, and George W. Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document work�ow histories. InUIST.

Shi-Min Hu, Kun Xu, Li-Qian Ma, Bin Liu, Bi-Ye Jiang, and Jue Wang. 2013. Inverse
Image Editing: Recovering a Semantic Editing History from a Before-and-after Image
Pair. ACM Trans. Graph.32, 6 (2013).

Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A
Survey on Shape Correspondence.Computer Graphics Forum(2011).

KhronosGroup. 2016.gltf e�cient, interoperable transmission of 3d scenes and models.
Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended Intrinsic Maps.

ACM Trans. Graph.30, 4 (2011).
Nicholas Kong, Tovi Grossman, Björn Hartmann, Maneesh Agrawala, and George

Fitzmaurice. 2012. Delta: A Tool for Representing and Comparing Work�ows. In
Proc. SIGCHI (CHI '12).

VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals.Soviet Physics Doklady10 (1966).

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research
Content Archive (ORCA). (2017). http://developer.nvidia.com/orca/
amazon-lumberyard-bistro

Morgan McGuire. 2017. Computer Graphics Archive. (2017). https://casual-e�ects.
com/data

Michel Neuhaus and Horst Bunke. 2007.Bridging the Gap between Graph Edit Distance
and Kernel Machines. World Scienti�c Publishing.

Onshape. 2014. Full-cloud 3d cad system. https://www.onshape.com/. (2014).
Bryan O'Sullivan. 2009.Mercurial: The De�nitive Guide. O'Reilly Media.
Maks Ovsjanikov, Michael Bronstein, Emanuele RodolÃ , Leonidas Guibas, Mirela

Ben-Chen, Etienne Corman, Frederic Chazal, and Alex Bronstein. 2017. Computing
and Processing Correspondances with Functional Maps. InSIGGRAPH '17 Courses.

Jakob Pharr and Humphreys. 2004. Scenes for pbrtv3. (2004). https://pbrt.org/scenes-v3.
html

Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance computation
by means of bipartite graph matching. InImage and Vision Computing. Vol. 27.

Gabriele Salvati, Christian Santoni, Valentina Tibaldo, and Fabio Pellacini. 2015. Mesh-
Histo: collaborative modeling by sharing and retargeting editing histories.ACM
Trans. Graph.34, 6 (2015).

Christian Santoni, Gabriele Salvati, Valentina Tibaldo, and Fabio Pellacini. 2018. Lev-
elMerge: Collaborative Game Level Editing by Merging Labeled Graphs.IEEE CG&A
38, 4 (2018).

Avinash Sharma, Radu Horaud, Jan Cech, and Edmond Boyer. 2011. Topologically-
Robust 3D Shape Matching Based on Di�usion Geometry and Seed Growing. In
Computer Vision and Pattern Recognition.

Sketchfab. 2011. Sketchfab. (2011). https://sketchfab.com
University Stanford. 1994. The Stanford 3D Scanning Repository. (1994). http://www.

graphics.stanford.edu/data/3Dscanrep/
Y Wang, D.J. DeWitt, and J.Y. Cai. 2003. X-Di�: An e�ective change detection algorithm

for XML documents.Proc. International Conference on Data Engineering.
WavefrontTechnologies. 1980.OBJ File Format.
Kaizhong Zhang. 1989. The editing distance between trees: algorithms and applications.

Ph.D. thesis, New York University(1989).
K. Zhang and D. Shasha. 1989. Simple Fast Algorithms for the Editing Distance Between

Trees and Related Problems.SIAM J. Comput.18, 6 (1989).

ACM Transactions on Graphics, Vol. 38, No. 6, Article 1. Publication date: November 2019.

